10D4805

CONVERTIDOR DC-DC ENTRADA (18V-75V) SALIDA 5V 2A 10W

Multiple specifications of power module options

MULTIPLE SPECIFICATIONS AVAILABLE

Wide voltage 48V (18-75V) input/regulated single output

<table>
<thead>
<tr>
<th>MODEL</th>
<th>POWER</th>
<th>VOLTAGE</th>
<th>ELECTRICITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLK-10D4805</td>
<td>10W</td>
<td>5V</td>
<td>2000mA</td>
</tr>
<tr>
<td>HLK-10D4812</td>
<td>10W</td>
<td>12V</td>
<td>833mA</td>
</tr>
<tr>
<td>HLK-10D4815</td>
<td>10W</td>
<td>15V</td>
<td>666mA</td>
</tr>
<tr>
<td>HLK-10D4824</td>
<td>10W</td>
<td>24V</td>
<td>416mA</td>
</tr>
</tbody>
</table>

*The same series of products have the same size and pins
*International standard pin size 25.4×25.4×11mm

PRODUCT FEATURES

- Ultra-wide range input (4:1) voltage: 18~75VDC
- Input and output isolation withstand voltage 1500VDC
- Ultra-fast start: 1ms (typical value)
- High efficiency, conversion efficiency up to 91% (Typ)
- Operating temperature range: -40°C~+85°C
- Metal shell, low output ripple
- Good output short circuit and over current protection and self-recovery
- International standard pin, PCB board in-line installation
- Potting and sealing with high-quality environmentally friendly waterproof and thermal conductive glue, dustproof, moistureproof, shockproof and flame retardant
- Meet UL/CE/EMC and safety testing requirements
- Can be used in medical, industrial control, electric power, instrumentation, communication, railway and other fields
Working environment temperature and load characteristics

Temperature reduction curve

Ambient temperature (°C)

Output %

Recommended test circuit

Generally recommended capacitance: C1: 47-100μF; C2, C3: 10-22μF.

All DC/DC converters of this series are tested according to the recommended test circuit shown in the figure below before leaving the factory.

If it is required to further reduce the input and output ripple, the input and output external capacitors C1, C2, C3 can be increased or selected in series with capacitors with a small equivalent impedance, but the capacitance cannot be greater than the maximum capacitive load of the product.
EMC solution-recommended circuit

Recommended parameters:

FUSE: Connect the corresponding fuse according to customer needs

MOV varistor: 14D101K

LDM1/common mode inductance: 15mH

E1, E2 electrolytic capacitors: 100μF/100V

C0, C1 ceramic capacitors: 1μF/100V

LDM2 differential mode inductor: 15 μH

CY1 safety Y2 capacitor: 1nF/250Vac

Output filter peripheral recommended circuit

Note:
1. C2 and C3 use high frequency and low resistance electrolytic capacitors, and the total capacity cannot exceed the maximum capacitive load marked in the manual, otherwise the module will not start normally.
2. For capacitive load, a minimum load of 3% must be guaranteed, otherwise it will cause abnormal output of the module.
Recommended parameters:

<table>
<thead>
<tr>
<th>Device code</th>
<th>5V output</th>
<th>9V/12V/15V output</th>
<th>24V output</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDM3/4 inductance</td>
<td>1μH</td>
<td>2.2μH</td>
<td>4.7μH</td>
</tr>
<tr>
<td>C2/3 electrolytic capacitor</td>
<td>220μF</td>
<td>100μF</td>
<td>68μF</td>
</tr>
<tr>
<td>C4 ceramic capacitor</td>
<td>1μF/50V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ripple & noise test: twisted pair method 20MHz bandwidth

Testing method:

1. Ripple noise is connected using 12# twisted pair, the oscilloscope bandwidth is set to 20MHz, 100M bandwidth probe, and 0.1μF polypropylene capacitor and 47μF high frequency low resistance electrolytic capacitor are connected in parallel to the probe end, and the oscilloscope sampling uses Sample sampling mode.

2. Connect the power input terminal to the input power source, and connect the power output to the electronic load through the fixture board. Use a 30cm±2cm sampling line to sample directly from the power output port for testing. The power line selects the corresponding wire diameter wire with insulation according to the output current. (As shown in FIG)
Pin description:

1: -Vin input negative; 2: +Vin input positive; 3: +Vo output positive; 4: NC; 5: -Vo output negative; 6: NC

*Note: If the definition of each pin of the power module is not consistent with the selection manual, the marking on the physical label shall prevail.