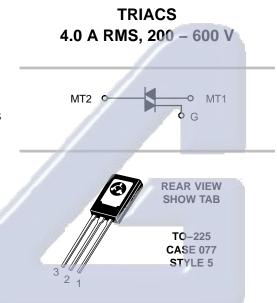
Preferred Device


Sensitive Gate Triacs

Silicon Bidirectional Thyristors

Designed primarily for full-wave AC control applications, such as light dimmers, motor controls, heating controls and power supplies; or wherever full-wave silicon gate controlled solid-state devices are needed. Triac type thyristors switch from a blocking to a conducting state for either polarity of applied anode voltage with positive or negative gate triggering.

Features

- Sensitive Gate Triggering Uniquely Compatible for Direct Coupling to TTL, HTL, CMOS and Operational Amplifier Integrated Circuit Logic Functions
- Gate Triggering: 4 Mode 2N6071A, B; 2N6073A, B; 2N6075A, B
- Blocking Voltages to 600 V
- All Diffused and Glass Passivated Junctions for Greater Parameter Uniformity and Stability
- Small, Rugged, Thermopad Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Device Marking: Device Type, e.g., 2N6071A, Date Code

Electrónica S.A

MARKING DIAGRAM

1. Cathode
2. Anode
3. Gate

YWW
2N
607xyG

y = A, B Y = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
*Peak Repetitive Off-State Voltage (Note 1) (T _J = -40 to 110°C, Sine Wave, 50 to 60 Hz, Gate Open) 2N6071A,B 2N6073A,B 2N6075A,B	V _{DRM,} V _{RRM}	200 400 600	V
*On-State RMS Current (T _C = 85°C) Full Cycle Sine Wave 50 to 60 Hz	I _{T(RMS)}	4.0	A
*Peak Non-repetitive Surge Current (One Full cycle, 60 Hz, T _J = +110°C)	I _{TSM}	30	Α
Circuit Fusing Considerations (t = 8.3 ms)	l ² t	3.7	A ² s
*Peak Gate Power (Pulse Width ≤ 1.0 μs, T _C = 85°C)	P _{GM}	10	W
*Average Gate Power (t = 8.3 ms, T _C = 85°C)	P _{G(AV)}	0.5	W
*Peak Gate Voltage (Pulse Width ≤ 1.0 μs, T _C = 85°C)	V_{GM}	5.0	V
*Operating Junction Temperature Range	T_J	-40 to +110	°C
*Storage Temperature Range	T _{stg}	-40 to +150	°C
Mounting Torque (6-32 Screw) (Note 2)	-	8.0	in. <mark>lb</mark> .

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

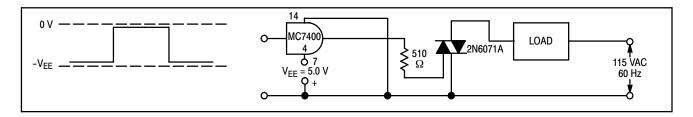
Characteristic	Symbol	Max	Unit
*Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	3.5	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{ heta JA}$	75	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	TL	260	°C

^{*}Indicates JEDEC Registered Data.

Electrónica S.A. de C.V.

V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

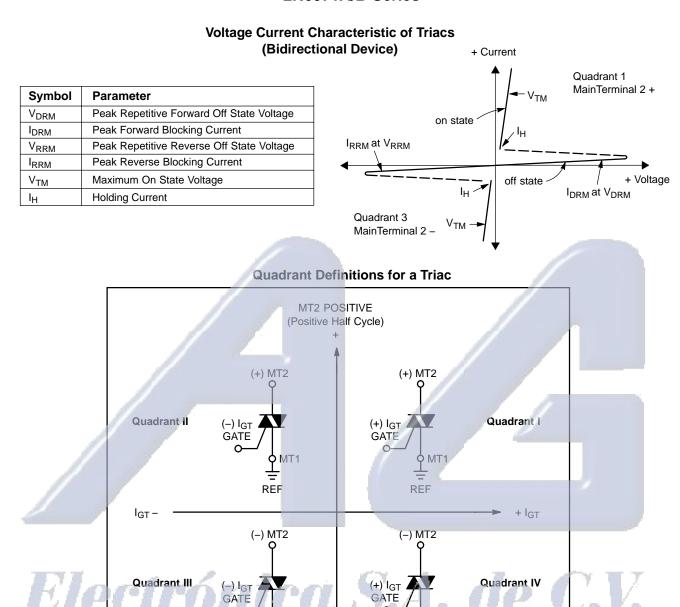
^{2.} Torque rating applies with use of a compression washer. Mounting torque in excess of 6 in. lb. does not appreciably lower case-to-sink thermal resistance. Main terminal 2 and heatsink contact pad are common.


ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
*Peak Repetitive Blocking Current $(V_D = Rated\ V_{DRM},\ V_{RRM};\ Gate\ Open)$ $T_J = 25^{\circ}0$ $T_J = 110$		I _{DRM,} I _{RRM}	1 1	1 1	10 2	μA mA
ON CHARACTERISTICS						
*Peak On-State Voltage (Note 3) ($I_{TM} = \pm 6.0 \text{ A Peak}$)		V_{TM}	-	-	2	V
*Gate Trigger Voltage (Continuous DC), All Quadrants (Main Terminal Voltage = 12 Vdc, $R_L = 100 \Omega$, $T_J = -40 ^{\circ}C$)		V _{GT}	-	1.4	2.5	V
Gate Non–Trigger Voltage, All Quadrants (Main Terminal Voltage = 12 Vdc, $R_L = 100 \Omega$, $T_J = 110$ °C)		V_{GD}	0.2	_	_	V
*Holding Current (Main Terminal Voltage = 12 Vdc, Gate Open, Initiating Current = ± 1 . $T_J = -40$ $T_J = 25^{\circ}$ c	°C ´	Iн	-	-	30 15	mA
Turn-On Time (I _{TM} = 14 Adc, I _{GT} = 100 mAdc)		t _{gt}	1	1.5	-	μS
			QUADRANT (Maximum Value))
	Туре	I _{GT} @ T _J	I mA	II mA	III mA	IV mA
Gate Trigger Current (Continuous DC)	2N6071A 2N6073A 2N6075A	+25°C	5	5	5	10
(Main Terminal Voltage = 12 Vdc, $R_L = 100 \Omega$)		-40°C	20	20	20	30
	2N6071B	+25°C	3	3	3	5
	2N6073B 2N6075B	-40°C	15	15	15	20
DYNAMIC CHARACTERISTICS						
Critical Rate of Rise of Commutation Voltage © V _{DRM} , T _J = 85°C, Gate Open, I _{TM} = 5.7 A, Exponential Waveform, Commutating di/dt = 2.0 A/ms		dv/dt(c)	-	5	-	V/μs

^{3.} Pulse Test: Pulse Width ≤ 2.0 ms, Duty Cycle ≤ 2%.

Electrónica S.A. de C.V.


SAMPLE APPLICATION: TTL-SENSITIVE GATE 4 AMPERE TRIAC TRIGGERS IN MODES II AND III

Trigger devices are recommended for gating on Triacs. They provide:

- 1. Consistent predictable turn-on points.
- 2. Simplified circuitry.
- 3. Fast turn-on time for cooler, more efficient and reliable operation.

^{*}Indicates JEDEC Registered Data.

All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used.

фМТ1

REF

SENSITIVE GATE LOGIC REFERENCE

MT2 NEGATIVE (Negative Half Cycle)

ф MT1

REF

IC Logic Functions	Firing Quadrant				
ic Logic Functions	ı	II	III	IV	
TTL		2N6071A Series	2N6071A Series		
HTL		2N6071A Series	2N6071A Series		
CMOS (NAND)	2N6071B Series			2N6071B Series	
CMOS (Buffer)		2N6071B Series	2N6071B Series		
Operational Amplifier	2N6071A Series			2N6071A Series	
Zero Voltage Switch		2N6071A Series	2N6071A Series		

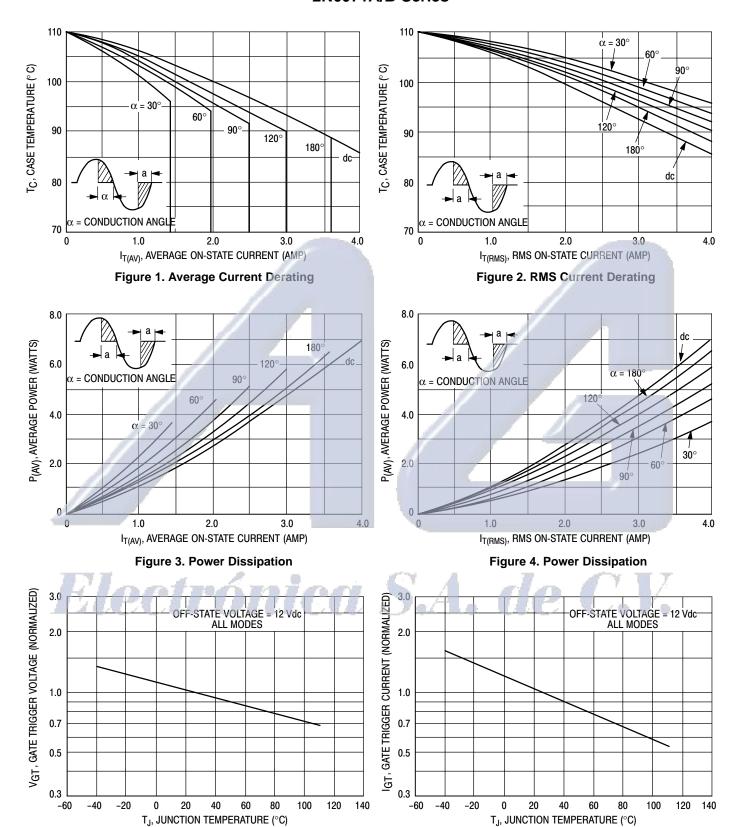


Figure 5. Typical Gate-Trigger Voltage

Figure 6. Typical Gate-Trigger Current

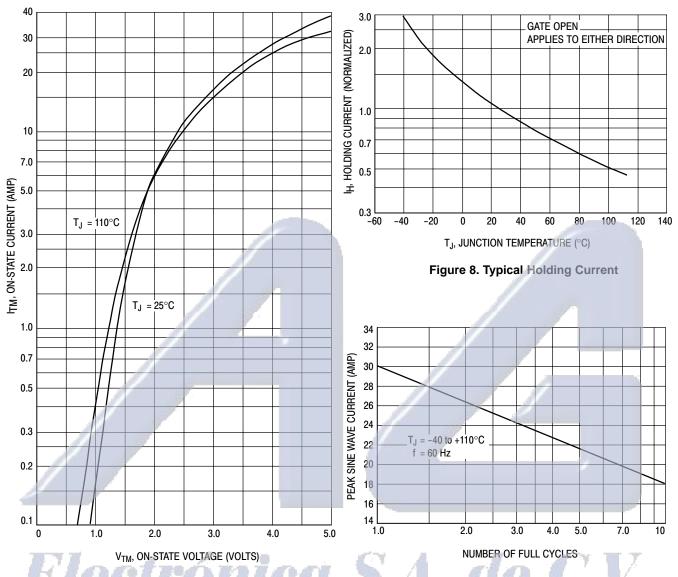


Figure 7. Maximum On-State Characteristics

Figure 9. Maximum Allowable Surge Current

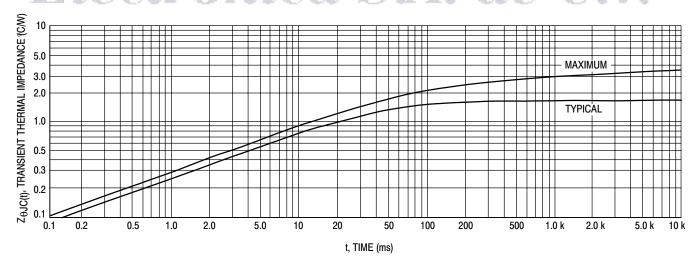
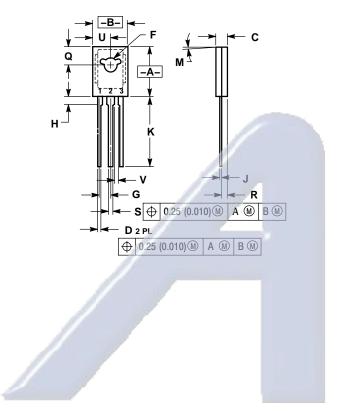


Figure 10. Thermal Response

ORDERING INFORMATION


Device	Package	Shipping [†]
2N6071A	TO-225	
2N6071AG	TO-225 (Pb-Free)	
2N6071B	TO-225	
2N6071BG	TO-225 (Pb-Free)	
2N6071BT	TO-225	
2N6071BTG	TO-225 (Pb-Free)	
2N6073A	TO-225	
2N6073AG	TO-225 (Pb-Free)	500 Units / Box
2N6073B	TO-225	
2N6073BG	TO-225 (Pb-Free)	
2N6075A	TO-225	
2N6075AG	TO-225 (Pb-Free)	
2N6075B	TO-225	
2N6075BG	TO-225 (Pb-Free)	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Electrónica S.A. de C.V.

PACKAGE DIMENSIONS

TO-225 CASE 77-09 ISSUE Z

- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. 077-01 THRU -08 OBSOLETE, NEW STANDARD 077-09.

	INC	INCHES		IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.425	0.435	10.80	11.04
В	0.295	0.305	7.50	7.74
С	0.095	0.105	2.42	2.66
D	0.020	0.026	0.51	0.66
F	0.115	0.130	2.93	3.30
G	0.094	BSC	2.39	BSC
Н	0.050	0.095	1.27	2.41
J	0.015	0.025	0.39	0.63
K	0.575	0.655	14.61	16.63
M	5° TYP		5°	TYP
Q	0.148	0.158	3.76	4.01
R	0.045	0.065	1.15	1.65
S	0.025	0.035	0.64	0.88
U	0.145	0.155	3.69	3.93
٧	0.040		1.02	

STYLE 5: PIN 1. MT 1

Electrónica S.A. de C.V.