

THYRISTORS

2P4M, 2P5M, 2P6M

2 A(4 A_{r.m.s.}) PLASTIC MOLDED THYRISTOR

DESCRIPTION

The 2P4M to 2P6M are P-gate all diffused plastic molded type SCR granted average on-state current 2 Amps ($T_c = 77$ °C), with rated voltages up to 600 volts.

FEATURES

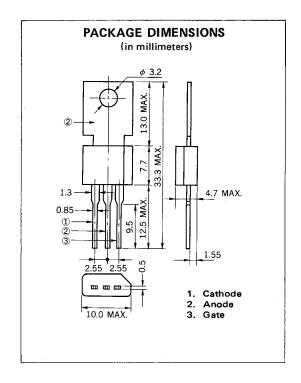
- Easy installation by its miniature size and thin electrode leads
- Less holding current distribution provides free application design.
- Low cost because of mass-production.

QUALITY GRADE

Standard

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

APPLICATIONS


Electric blanket, Electronic jar, Various temperature control.

Electric sewing machine, Speed control of miniature type motor

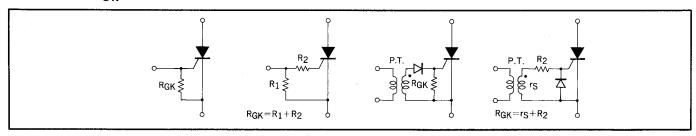
Light display equipment, Lamp dimmer such as a display for entertainment.

Automatic gas lighter, Battery charger.

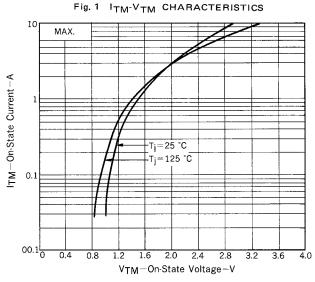
Solid state static switches etc.

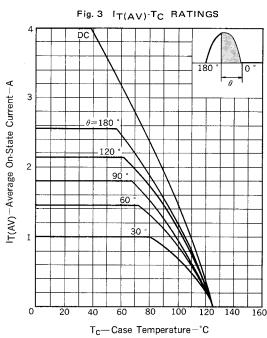
ABSOLUTE MAXIMUM RATINGS (Ta = 25 $^{\circ}$ C)

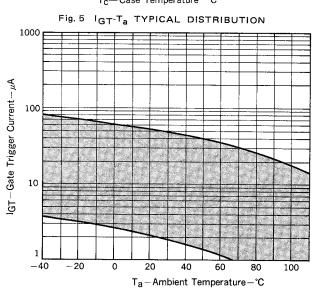
CHARACTERISTIC	SYMBOL	2P4M	2P5M	2P6M	UNIT	NOTE
Non-Repetitive Peak Reverse Voltage*	VRSM	500	600	700	V	RGK = 1 kΩ
Non-Repetitive Peak Off-state Voltage*	V _{DSM}	500	600	700	V	R _{GK} = 1 kΩ
Repetitive Peak Reverse Voltage*	VRRM	400	500	600	V	R _{GK} = 1 kΩ
Repetitive Peak Off-state Voltage*	VDRM	400	500	600	V	R _{GK} = 1 kΩ
On-state Current	IT(AV)	2 (T_c = 77 °C, θ = 180 ° Single phase (1/2 wave)			А	See Fig.3, Fig.
Surge Non-Repetitive On-state Current	[†] TSM	20			Α	See Fig. 10
Peak Gate Power Dissipation	РGМ	0.5 (f ≥ 50 Hz, Duty ≤ 10 %)			w	
Average Gate Power Dissipation	PG(AV)	0.1			W	
Peak Gate Forward Current	I _{FGM}	0.2 (f ≥ 50 Hz, Duty ≤ 10 %)			Α	
Peak Gate Reverse Voltage	VRGM	6			V	
Junction Temperature	Тј	-40 to + 125			°C	
Storage Temperature	T _{stg}	-55 to +150			°c	
Weight		1.4			g	

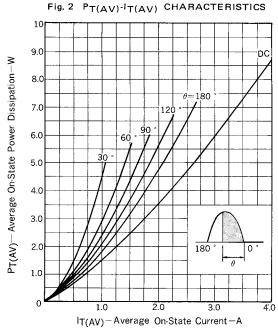

T_c: Case Temperature is measured at 1.5 mm from the neck of Tablet.

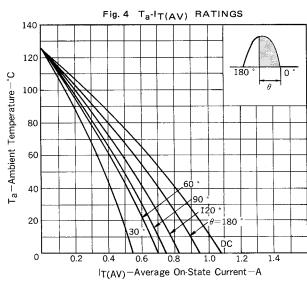
ELECTRICAL CHARACTERISTICS (Ta=25 $^{\circ}$ C)

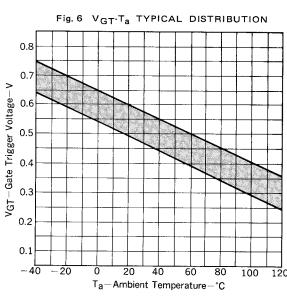

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Repetitive Peak Reverse Current*	IRRM	$V_{RM} = V_{RRM}, T_j = 125 ^{\circ}C$ $R_{GK} = 1 k\Omega$	_	_	100	μΑ	·
Repetitive Peak Off-state Current*	IDRM	$V_{DM} = V_{DRM}, T_j = 125 ^{\circ}C$ $R_{GK} = 1 k\Omega$	_	-	100	μΑ	
On-state Voltage	V _{TM}	I _{TM} = 4 A	_	_	2.2	V	See Fig. 1
Gate-Trigger Current*	^I GT	$V_{DM} = 6 \text{ V}, R_L = 100 \Omega$ $R_{GK} = 1 \text{ k}\Omega$	_	_	200	μΑ	See Fig. 5 Fig. 7
Gate-Trigger Voltage*	V _{GT}	V_{DM} = 6 V, R _L = 100 Ω R _{GK} = 1 kΩ	_	_	8.0	V	See Fig. 6, Fig. 8
Gate Non-Trigger Voltage*	V _{GD}	$V_{DM} = 1/2 V_{DRM}, T_j = 125 °C$ $R_{GK} = 1 k\Omega$	0.2		_	٧	
Critical Rate-of-Rise of Off-state Voltage	dv/dt	V _{DM} = 2/3 V _{DRM} , T _j = 125 °C R _{GK} = 1 kΩ	10	10**	_	V/μS	** 2P5M, 2P6M
Holding Current*	lН	V _D = 24 V, R _{GK} = 1 kΩ I _{TM} = 4 A	_	1	3	mA	See Fig. 9
Thermal Resistance	Rth (J-c)	Junction to Case	_	_	10 °C/W		See Fig. 11
	R _{th} (j-a)	Junction to Ambient	_	_	75	C/VV	See Fig. 11

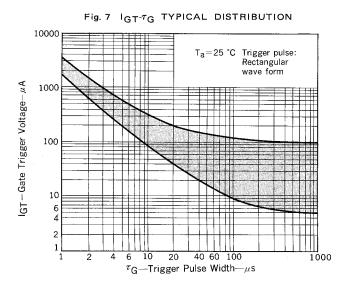

^{**} Note: Insert a resistance less than 1 k Ω between gate and cathode, because the items indicated are guaranteed by connecting short resistance between gate and cathode (R_{GK} = 1 k Ω).

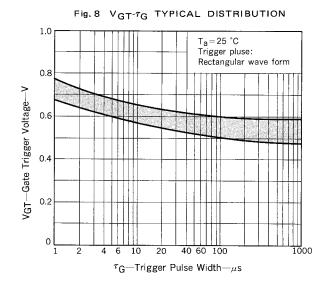

EXAMPLE OF $R_{G\,K}$ INSERTION

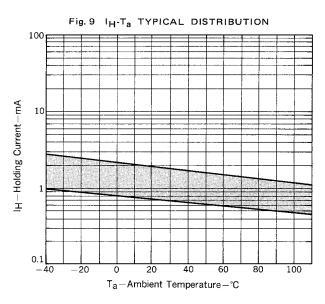


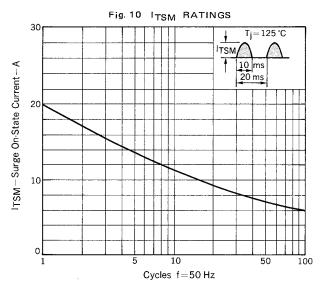

TYPICAL CHARACTERISTICS (Ta = 25 °C)

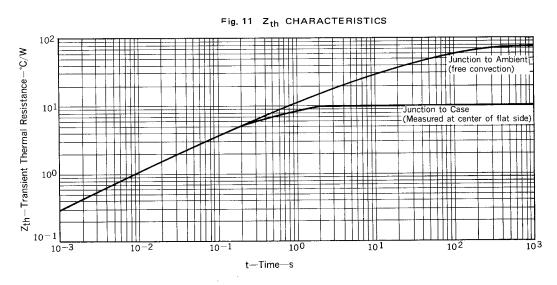


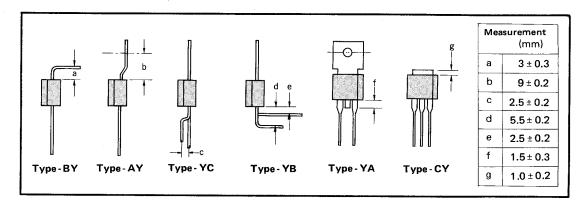












NOTICE FOR INSTALLATION

- 1. Electrode leads (especially heat sink tablet) are not granted to be bent because of wet-proof. However in case it is required inevitably, a mechanical stress should not be put on mold. Fix tightly between the mold case and the area to be formed or bent.
- 2. Electrode leads should not to be bent more than twice over 90° . Avoid the bending within 1.5 mm from the neck of mold case.
- 3. Special lead and heat tab formings as indicated below are available at an additional cost.

- 4. The surface of heat sink for thermal radiator is to be smooth without any foreign matter.
- 5. Suitable torque value is 4 to 5 kg.cm.
- 6. Soldering
 - O Recommended solder: PbSu (4:6)

Melting point 180 °C

O Soldering temperature and period

REFERENCE

Document name	Document No.		
Quality control guide of semiconductor devices	MEI-1202		
Assembly manual of semiconductor devices	IEI-1207		