

November 1983 Revised January 1999

CD4016BC Quad Bilateral Switch

General Description

The CD4016BC is a quad bilateral switch intended for the transmission or multiplexing of analog or digital signals. It is pin-for-pin compatible with CD4066BC.

Features

- Wide supply voltage range: 3V to 15V
- Wide range of digital and analog switching: ±7.5 V_{PEAK}
- "ON" resistance for 15V operation: 400Ω (typ.)
- Matched "ON" resistance over 15V signal input: $\Delta R_{ON} = 10\Omega$ (typ.)
- High degree of linearity:
 - 0.4% distortion (typ.)

@
$$f_{IS} = 1 \text{ kHz}, V_{IS} = 5 V_{p-p}$$

 $V_{DD}-V_{SS} = 10V$, $R_L = 10 \text{ k}\Omega$

■ Extremely low "OFF" switch leakage:

0.1 nA (typ.)

$$@V_{DD} - V_{SS} = 10V$$

 $T_A = 25^{\circ}C$

- Extremely high control input impedance: $10^{12}\Omega$ (typ.)
- Low crosstalk between switches:
 - -50 dB (typ.)
 - @ $f_{IS} = 0.9 \text{ MHz}, R_L = 1 \text{ k}\Omega$
- Frequency response, switch "ON": 40 MHz (typ.)

Applications

- Analog signal switching/multiplexing
 - Signal gating

Squelch control

Chopper

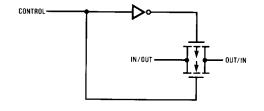
Modulator/Demodulator

Commutating switch

- Digital signal switching/multiplexing
- · CMOS logic implementation
- Analog-to-digital/digital-to-analog conversion
- Digital control of frequency, impedance, phase, and analog-signal gain

Ordering Code:

Order Number	Package Number	Package Description
CD4016BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
CD4016BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide


Devices also available in Tape and Reel. Specify by appending the letter suffix "X" to the ordering code.

Connection Diagram

Schematic Diagram

0UT/IN 2 13 CONTROL A 0UT/IN 3 12 CONTROL D 1N/OUT 4 11 IN/OUT CONTROL B 5 SWB 10 OUT/IN CONTROL C 6 9 OUT/IN VSS 7 SWC B IN/OUT

Pin Assignments for DIP and SOIC

© 1999 Fairchild Semiconductor Corporation

DS005661.prf

3V to 15V

0V to V_{DD}

-40°C to +85°C

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions (Note 2)

V_{DD} Supply Voltage

V_{IN} Input Voltage

700 mW

500 mW

(Note 2)

-0.5V to +18V $V_{\mbox{\scriptsize DD}}$ Supply Voltage

V_{IN} Input Voltage -0.5V to $V_{DD} + 0.5V$ -65°C to + 150°C

 T_S Storage Temperature Range Power Dissipation (P_D)

Dual-In-Line Small Outline

Lead Temperature 260°C (Soldering, 10 seconds)

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.

Note 2: V_{SS} = 0V unless otherwise specified.

T_A Operating Temperature Range

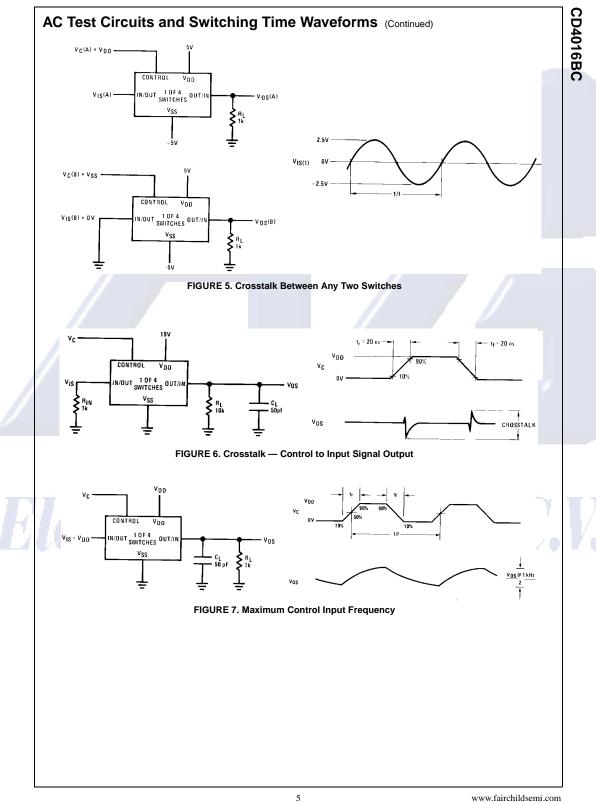
DC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions	-4	0°C		25°C		+8	5°C	Units
Зуппоот	Farameter		Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		1.0	7	0.01	1.0		7.5	μΑ
	Current	$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		2.0	17	0.01	2.0		15	μΑ
	//	$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		4.0	7	0.01	4.0		30	μΑ
Signal Inputs and Outputs							/	7.1		
R _{ON}	"ON" Resistance	$R_L = 10k\Omega$ to $(V_{DD} - V_{SS})/2$		7.7		7		77		
		$V_C = V_{DD}$, $V_{IS} = V_{SS}$ or V_{DD}		7			- 4	1		
		$V_{DD} = 10V$		610		275	660		840	Ω
		V _{DD} = 15V	77	370		200	400		520	Ω
		$R_L = 10k\Omega$ to $(V_{DD} - V_{SS})/2$	7							
		$V_C = V_{DD}$								
		$V_{DD} = 10V$, $V_{IS} = 4.75$ to 5.25V		1900		850	2000		2380	Ω
		$V_{DD} = 15V$, $V_{IS} = 7.25$ to $7.75V$		790		400	850		1080	Ω
ΔR_{ON}	Δ"ON" Resistance	$R_L = 10k\Omega$ to $(V_{DD} - V_{SS})/2$								
	Between any 2 of	$V_C = V_{DD}$, $V_{IS} = V_{SS}$ to V_{DD}								
	4 Switches	V _{DD} = 10V				15				Ω
	(In Same Package)	V _{DD} = 15V	.			10				Ω
I _{IS}	Input or Output	V _C = 0, V _{DD} = 15V		±50		±0.1	±50		±200	nA
	Leakage	$V_{IS} = 0V$ or 15V,								
	Switch "OFF"	V _{OS} = 15V or 0V								
Control II	nputs									
V _{ILC} LOW Level Input V _{IS}		$V_{IS} = V_{SS}$ and V_{DD}								
	Voltage	$V_{OS} = V_{DD}$ and V_{SS}		/		71				
		$I_{IS} = \pm 10 \mu A$								
	LOG TOTAL	V _{DD} = 5V	d d	0.9		. 4	0.7_	١.	0.4	V
		$V_{DD} = 10V$		0.9			0.7		0.4	V
		$V_{DD} = 15V$		0.9			0.7		0.4	V
V _{IHC}	HIGH Level Input	$V_{DD} = 5V$	3.5		3.5			3.5		V
	Voltage	$V_{DD} = 10V$	7.0		7.0			7.0		V
		$V_{DD} = 15V$	11.0		11.0			11.0		V
		(Note 3) and Figure 8								
I _{IN}	Input Current	V _{CC} - V _{SS} = 15V		±0.3		±10 ⁻⁵	±0.3		±1.0	μА
		$V_{DD} \ge V_{IS} \ge V_{SS}$								
		$V_{DD} \ge V_C \ge V_{SS}$								
Note 2: If	the ewitch input is held at \/	V _{III} is the control input level that will cause t	ho cwitch	output t	n moot th	o etanda	rd "D" cor	ioc V /	ndl o	utnut

Note 3: If the switch input is held at V_{DD}, V_{IHC} is the control input level that will cause the switch output to meet the standard "B" series V_{OH} and I_{OH} output levels. If the analog switch input is connected to V_{SS} , V_{IHC} is the control input level — which allows the switch to sink standard "B" series $|I_{OH}|$, high level currents of the switch to sink standard "B" series $|I_{OH}|$, high level currents are successful to the switch to sink standard "B" series $|I_{OH}|$, high level currents are successful to the switch to sink standard "B" series $|I_{OH}|$, high level currents are successful to the switch to sink standard "B" series $|I_{OH}|$, high level currents are successful to the switch to sink standard "B" series $|I_{OH}|$, high level currents are successful to the switch to sink standard "B" series $|I_{OH}|$, high level currents are successful to the switch to sink standard "B" series $|I_{OH}|$, high level currents are successful to the switch to sink standard "B" series $|I_{OH}|$, high level currents are successful to the switch standard "B" series $|I_{OH}|$, high level currents are successful to the switch standard "B" series $|I_{OH}|$, high level currents are successful to the switch standard "B" series $|I_{OH}|$, which is successful to the switch standard "B" series $|I_{OH}|$, which satisfacts are successful to the switch standard "B" series $|I_{OH}|$, which satisfacts are successful to the switch standard "B" series $|I_{OH}|$, which satisfacts are successful to the switch standard "B" series $|I_{OH}|$, and $|I_{OH}|$ series $|I_{OH}|$, which satisfacts are successful to the switch standard "B" series $|I_{OH}|$, which satisfacts are successful to the switch standard "B" series $|I_{OH}|$, which satisfacts are successful to the switch standard "B" series $|I_{OH}|$, which satisfacts are successful to the switch standard "B" series $|I_{OH}|$, which satisfacts are successful to the switch standard "B" series $|I_{OH}|$, which satisfacts are successful to the switch standard "B" series $|I_{OH}|$, which satisfacts are successful to the switch standard "B" series $|I_{OH}|$, which satisfacts are successful to the switch standard "B" se rent, and still maintain a $V_{OL} \le$ "B" series. These currents are shown in Figure 8.

AC Electrical Characteristics (Note 4)

 $T_A = 25$ °C, $t_r = t_f = 20$ ns and $V_{SS} = 0$ V unless otherwise specified

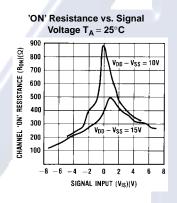

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} , t _{PLH}	Propagation Delay Time	V _C = V _{DD} , C _L = 50 pF, (Figure 1)				
	Signal Input to Signal Output	R _L = 200k				
		$V_{DD} = 5V$		58	100	ns
		V _{DD} = 10V		27	50	ns
		V _{DD} = 15V		20	40	ns
t _{PZH} , t _{PZL}	Propagation Delay Time	$R_L = 1.0 \text{ k}\Omega$, $C_L = 50 \text{ pF}$, (Figure 2, Figure 3)			77	
	Control Input to Signal	$V_{DD} = 5V$		20	50	ns
	Output HIGH Impedance to	$V_{DD} = 10V$		18	40	ns
	Logical Level	V _{DD} = 15V		17	35	ns
t _{PHZ} , t _{PLZ}	Propagation Delay Time	$R_L = 1.0 \text{ k}\Omega$, $C_L = 50 \text{ pF}$, (Figure 2, Figure 3)		7/		7
	Control Input to Signal	$V_{DD} = 5V$		15	40	ns
	Output Logical Level to	$V_{DD} = 10V$	- //	11	25	ns
	HIGH Impedance	V _{DD} = 15V	-//	10	22	ns
	Sine Wave Distortion	$V_C = V_{DD} = 5V, V_{SS} = -5$	77	0.4		%
	//	$R_L = 10 \text{ k}\Omega, V_{IS} = 5 V_{P-P}, f = 1 \text{ kHz},$	/			
	///	(Figure 4)				
	Frequency Response — Switch	$V_C = V_{DD} = 5V, V_{SS} = -5V,$		40	- //	MHz
	"ON" (Frequency at -3 dB)	$R_L = 1 k\Omega, V_{IS} = 5 V_{P-P},$			-//	
		20 Log ₁₀ V _{OS} /V _{OS} (1 kHz) -dB,			7/	
		(Figure 4)				
	Feedthrough — Switch "OFF"	$V_{DD} = 5V, V_{C} = V_{SS} = -5V,$		1.25		MHz
	(Frequency at -50 dB)	$R_L = 1 k\Omega$, $V_{IS} = 5 V_{P-P}$,	7			
		20 Log ₁₀ (V _{OS} /V _{IS}) = -50 dB,				
		(Figure 4)				
	Crosstalk Between Any Two	$V_{DD} = V_{C(A)} = 5V$; $V_{SS} = V_{C(B)} = -5V$,		0.9		MHz
	Switches (Frequency at -50 dB)	$R_L = 1 k\Omega V_{IS(A)} = 5 V_{P-P}$				
		20 $Log_{10} (V_{OS(B)}/V_{OS(A)}) = -50 \text{ dB},$				
		(Figure 5)				
	Crosstalk; Control Input to	$V_{DD} = 10V, R_{L} = 10 \text{ k}\Omega$		150		mV _{P-F}
	Signal Output	$R_{IN} = 1 \text{ k}\Omega$, $V_{CC} = 10V$ Square Wave,				
		C _L = 50 pF (Figure 6)				
	Maximum Control Input	$R_L = 1 \text{ k}\Omega$, $C_L = 50 \text{ pF}$, (Figure 7)				
		$V_{OS(f)} = \frac{1}{2} V_{OS}(1 \text{ kHz})$		_		
		V _{DD} = 5V		6.5		MHz
	JATES JAKES	V _{DD} = 10V		8.0		MHz
	W - 8 8 - 8 8 8 8 .	V _{DD} = 15V		9.0	7	MHz
C _{IS}	Signal Input Capacitance		- 1	4	~	pF
Cos	Signal Output Capacitance	V _{DD} = 10V		4		pF
C _{IOS}	Feedthrough Capacitance	V _C = 0V		0.2		pF
C _{IN}	Control Input Capacitance	-		5	7.5	pF

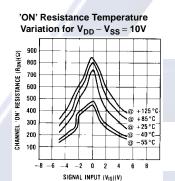
Note 4: AC Parameters are guaranteed by DC correlated testing.

Note 5: These devices should not be connected to circuits with the power "ON".

Note 6: In all cases, there is approximately 5 pF of probe and jig capacitance on the output; however, this capacitance is included in C_L wherever it is specified.

 $[\]textbf{Note 7:} \ V_{IS} \ \text{is the voltage at the in/out pin and } \ V_{OS} \ \text{is the voltage at the out/in pin.} \ V_{C} \ \text{is the voltage at the control input.}$


CD4016BC


AC Test Circuits and Switching Time Waveforms (Continued)

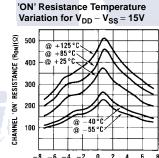
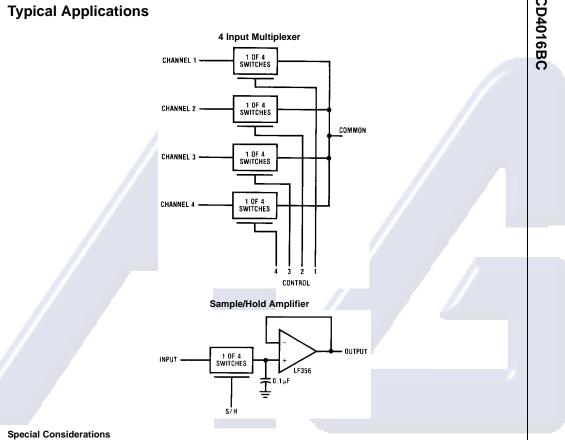
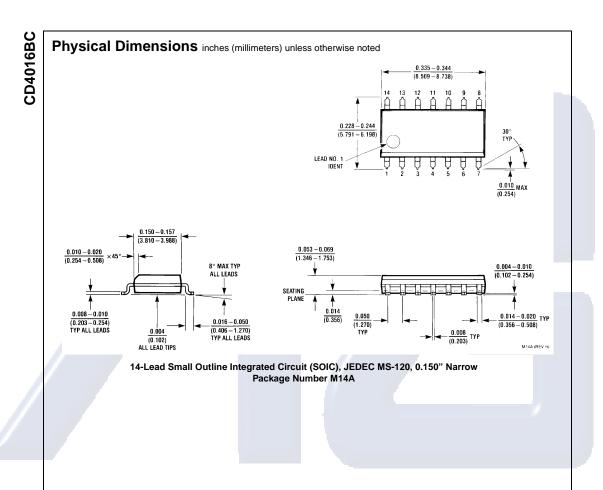
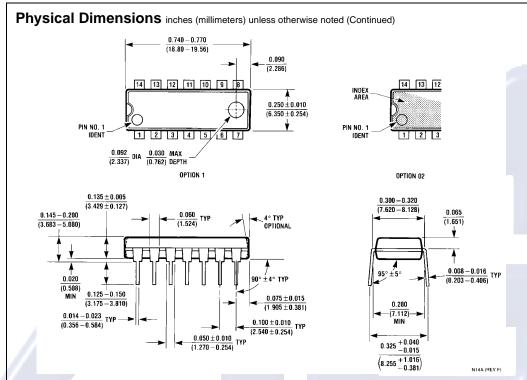

Temperature			Switc	h Input		Switch	Output	
Range	V_{DD}	V _{IS}		I _{IS} (mA)	V _{os} (V)			
			–40°C	25°C	+85°C	Min	Max	
	5	0	0.2	0.16	0.12		0.4	
	5	5	-0.2	-0.16	-0.12	4.6	7/	
COMMERCIAL	10	0	0.5	0.4	0.3		0.5	
	10	10	-0.5	-0.4	-0.3	9.5		
	15	0	1.4	1.2	1.0	///	1.5	
	15	15	-1.4	-1.2	-1.0	13.5		

FIGURE 8. CD4016B Switch Test Conditions for V_{IHC}


Typical Performance Characteristics




SIGNAL INPUT (VIS)(V)

The CD4016B is composed of 4, two-transistor analog switches. These switches do not have any linearization or compensation circuitry for "R_{ON}" as do the CD4066B's. Because of this, the special operating considerations for the CD4066B do not apply to the CD4016B, but at low supply voltages, ≤5V, the CD4016B's on resistance becomes non-linear. It is recommended that at 5V, voltages on the in/ out pins be maintained within about 1V of either $V_{\mbox{\scriptsize DD}}$ or $\ensuremath{\text{V}_{\text{SS}}};$ and that at 3V the voltages on the in/out pins should be at $V_{\mbox{\scriptsize DD}}$ or $V_{\mbox{\scriptsize SS}}$ for reliable operation.

Electrónica S.A. de C.V.

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

Electrónica S.A. de C.V.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.