

October 1987 Revised January 1999

CD4030C Quad EXCLUSIVE-OR Gate

General Description

The CD4030C EXCLUSIVE-OR gates are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. All inputs are protected against static discharge with diodes to V_{DD} and V_{SS}.

Features

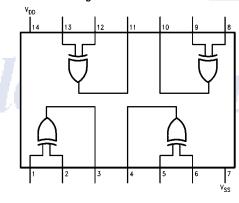
- Wide supply voltage range: 3.0V to 15V
- Low power: 100 nW (typ.)
- Medium speed operation:

 $t_{PHL} = t_{PLH} = 40$ ns (typ.) at $C_L = 15$ pF, 10V supply

■ High noise immunity 0.45 V_{CC} (typ.)

Applications

- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- Industrial controls
- Remote metering
- Computers


Ordering Code:

Order Number	Package Number	Package Description
CD4030CSJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
CD4030CN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

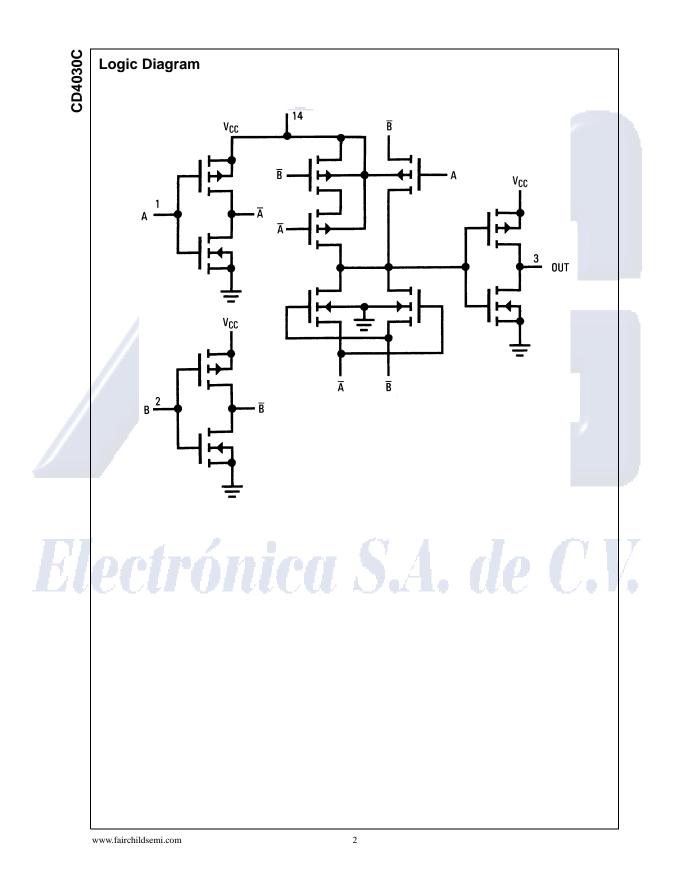
Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

Pin Assignments for DIP and SOP

Truth Table

Α	В	J
0	0	0
1	0	1
0	1	1
1 1	1	0


1 = HIGH Level

0 = LOW Level

© 1999 Fairchild Semiconductor Corporation

DS005961.prf

www.fairchildsemi.com

www.agelectronica.com

Absolute Maximum Ratings(Note 1)

 $\begin{array}{lll} \mbox{Voltage at Any Pin (Note 2)} & \mbox{V}_{SS} - 0.3 \mbox{V to V}_{SS} + 15.5 \mbox{V} \\ \mbox{Operating Temperature Range} & -40 \mbox{°C to } + 85 \mbox{°C} \\ \mbox{Storage Temperature Range} & -65 \mbox{°C to } + 150 \mbox{°C} \\ \end{array}$

Power Dissipation (P_D)

 $\begin{array}{ccc} \text{Dual-In-Line} & 700 \text{ mW} \\ \text{Small Outline} & 500 \text{ mW} \\ \text{Operating V}_{\text{DD}} \text{ Range} & \text{V}_{\text{SS}} + 3.0 \text{V to V}_{\text{SS}} + 15 \text{V} \\ \end{array}$

Lead Temperature (Soldering, 10 seconds)

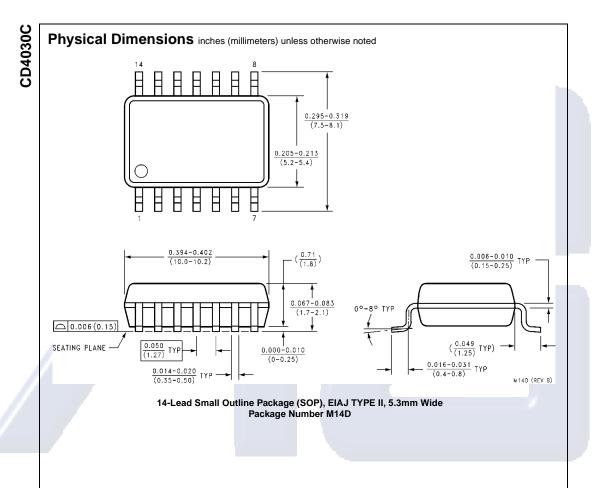
260°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics tables provide conditions for actual device operation.

Note 2: This device should not be connected to circuits with power on because high transient voltages may cause permanent damage.

DC Electrical Characteristics

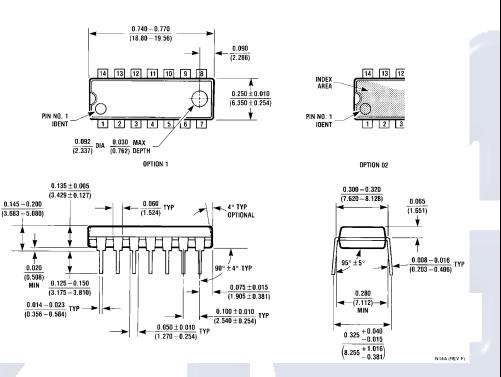
				Limits								
Symbol	Parameter	Conditions		-40°C			+25°C			+85°C		
	//		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
IL	Quiescent Device	$V_{DD} = 5.0V$			5.0		0.05	5.0		1	70	μΑ
	Current	$V_{DD} = 10V$			10		0.1	10			140	μΑ
P _D	Quiescent Device	$V_{DD} = 5.0V$			25		0.25	25		7	350	μW
	Dissipation Package	$V_{DD} = 10V$			100		1.0	100			1,400	μW
V _{OL}	Output Voltage	V _{DD} = 5.0V			0.05		0	0.05			0.05	V
	LOW Level	V _{DD} = 10V			0.05		0	0.05			0.05	V
V _{OH}	Output Voltage	V _{DD} = 5.0V	4.95			4.95	5.0		4.95	13		V
	HIGH Level	V _{DD} = 10V	9.95			9.95	10		9.95			V
V _{NL}	Noise Immunity	V _{DD} = 5.0V	1.5			1.5	2.25	7	1.4			V
	(All Inputs)	V _{DD} = 10V	3.0			3.0	4.5		2.9			V
V _{NH}	Noise Immunity	V _{DD} = 5.0V	1.4			1.5	2.25		1.5			V
	(All Inputs)	V _{DD} = 10V	2.9			3.0	4.5		3.0			V
I _D N	Output Drive Current	V _{DD} = 5.0V	0.35			0.3	1.2		0.25			mA
	N-Channel (Note 3)	V _{DD} = 10V	0.7		1	0.6	2.4		0.5			mA
I _D P	Output Drive Current	V _{DD} = 5.0V	-0.21		7	-0.15	-0.6		-0.12			mA
	P-Channel (Note 3)	V _{DD} = 10 V	-0.45			-0.32	-1.3		-0.25			mA
I _I	Input Current	$V_I = 0V \text{ or } V_I = V_{DD}$					10					pА


Note 3: I_DN and I_DP are tested one output at a time.

AC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	7	Limits			
			Min	Тур	Max	Units	
t _{PHL}	Propagation Delay Time	V _{DD} = 5.0V		100	300	ns	
		V _{DD} = 10V		40	150	ns	
t _{PLH}	Propagation Delay Time	V _{DD} = 5.0V		100	300	ns	
		V _{DD} = 10V		40	150	ns	
t _{THL}	Transition Time	V _{DD} = 5.0V		70	300	ns	
	HIGH-to-LOW Level	V _{DD} = 10V		25	150	ns	
t _{TLH}	Transition Time	V _{DD} = 5.0V		80	300	ns	
	LOW-to-HIGH Level	V _{DD} = 10V		30	150	ns	
C _I	Input Capacitance	$V_I = 0V \text{ or } V_I = V_{DD}$		5.0		pF	

Note 4: AC Parameters are guaranteed by DC correlated testing.


www.fairchildsemi.com

Electrónica S.A. de C.V.

www.fairchildsemi.com

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

Electrónica S.A. de C.V.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.