

October 1987 Revised August 2000

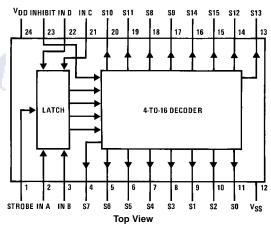
CD4514BC• CD4515BC 4-Bit Latched/4-to-16 Line Decoders

General Description

The CD4514BC and CD4515BC are 4-to-16 line decoders with latched inputs implemented with complementary MOS (CMOS) circuits constructed with N- and P-channel enhancement mode transistors. These circuits are primarily used in decoding applications where low power dissipation and/or high noise immunity is required.

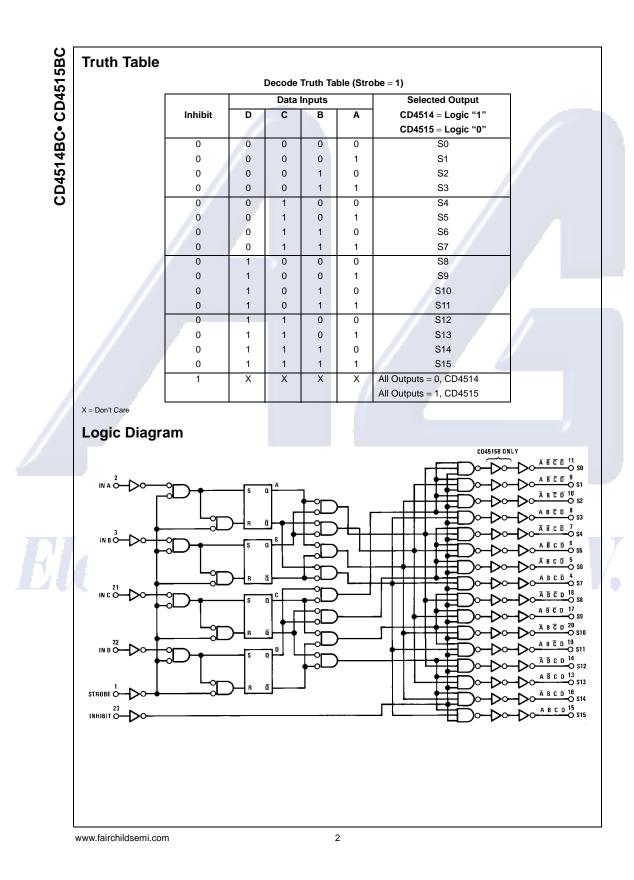
The CD4514BC (output active high option) presents a logical "1" at the selected output, whereas the CD4515BC presents a logical "0" at the selected output. The input latches are R-S type flip-flops, which hold the last input data presented prior to the strobe transition from "1" to "0". This input data is decoded and the corresponding output is activated. An output inhibit line is also available.

Features


- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL: fan out of 2 compatibility: driving 74L
- Low quiescent power dissipation: 0.025 μW/package @ 5.0 V_{DC}
- Single supply operation
- Input impedance = $10^{12}\Omega$ typically
- Plug-in replacement for MC14514, MC14515

Ordering Code:

Order Number	Package Number	Package Diagram					
CD4514BCWM	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide					
CD4514BCN	N24A	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-011, 0.600 Wide					
CD4515BCWM	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide					
CD4515BCN	N24A	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-011, 0.600 Wide					


Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

© 2000 Fairchild Semiconductor Corporation

DS005994

Absolute Maximum Ratings(Note 1)

(Note 2)

DC Supply Voltage (V_{DD}) -0.5V to +18V Input Voltage (V_{IN}) -0.5V to $V_{DD} + 0.5V$ -65°C to +150°C

Storage Temperature Range (T_S)

Power Dissipation (P_D)

Dual-In-Line 700 mW Small Outline 500 mW

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions (Note 2)

DC Supply Voltage (V_{DD}) 3V to 15V Input Voltage (V_{IN}) 0V to V_{DD}

Operating Temperature Range (T_A)

CD4514BC, CD4515BC -40°C to +85°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.

Note 2: V_{SS} = 0V unless otherwise specified.

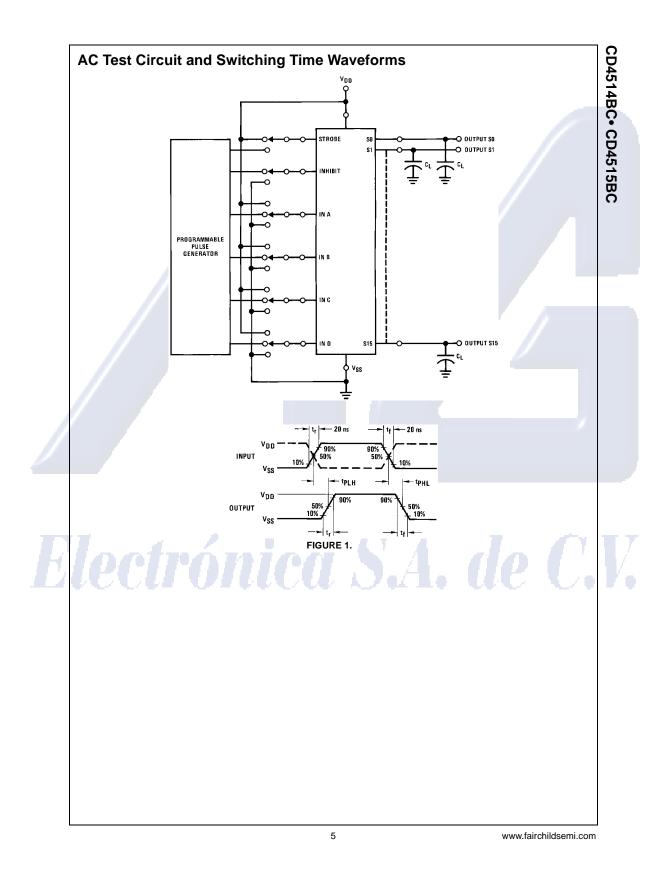
DC Electrical Characteristics (Note 2)

CD4514BC, CD4515BC

Symbol	Parameter	Conditions	-40°C		+25°C			+85°C		Units
Symbol	Farameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Oilles
I _{DD}	Quiescent Device	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		20		0.005	20		150	μΑ
	Current	$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		40		0.010	40		300	μΑ
		$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		80	77	0.015	80		600	μΑ
V _{OL}	LOW Level	$V_{IL} = 0V, V_{IH} = V_{DD},$					-/-		1	
	Output Voltage	I _O < 1 μA					7			
- 1		$V_{DD} = 5V$		0.05		0	0.05	200	0.05	V
- //		V _{DD} = 10V	4	0.05		0	0.05		0.05	V
		V _{DD} = 15V	- 4	0.05		0	0.05		0.05	V
V _{OH}	HIGH Level	$V_{IL} = 0V$, $V_{IH} = V_{DD}$,								
7	Output Voltage	I _O < 1 μA								
		$V_{DD} = 5V$	4.95		4.95	5.0		4.95		V
		V _{DD} = 10V	9.95		9.95	10.0		9.95		V
		V _{DD} = 15V	14.95		14.95	15.0		14.95		V
V _{IL}	LOW Level	I _O < 1 μA								
	Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5		2.25	1.5		1.5	V
		$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$		3.0		4.50	3.0		3.0	V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$		4.0		6.75	4.0		4.0	V
V _{IH}	HIGH Level	I _O < 1 μA								
_	Input Voltage	$V_{DD} = 5V$, $V_{O} = 0.5V$ or 4.5V	3.5		3.5	2.75		3.5		V
		$V_{DD} = 10V$, $V_{O} = 1.0V$ or 9.0V	7.0		7.0	5.50		7.0		V
840		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	11.0	1	11.0	8.25	71	11.0		V
l _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.52	_ /-	0.44	0.88		0.36		mA
	Current (Note 3)	$V_{DD} = 10V, V_{O} = 0.5V$	1.3	14	1.1	2.25	$A_{i}A_{i}$	0.90	- 1	mA
		$V_{DD} = 15V, V_{O} = 1.5V$	3.6		3.0	8.8		2.4		mA
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.52		-0.44	-0.88		-0.36		mA
	Current (Note 3)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.3		-1.1	-2.25		-0.90		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-3.6		-3.0	-8.8		-2.4		mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.3		-10 ⁻⁵	-0.3		-1.0	μΑ
		$V_{DD} = 15V, V_{IN} = 15V$		0.3		10 ⁻⁵	0.3		1.0	μΑ

Note 3: I_{OH} and I_{OL} are tested one output at a time.

CD4514BC• CD4515BC


Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{THL} , t _{TLH}	Transition Times	$V_{DD} = 5V$		100	200	ns
		V _{DD} = 10V		50	100	ns
		V _{DD} = 15V		40	80	ns
t _{PLH} , t _{PHL}	Propagation Delay Times	$V_{DD} = 5V$		550	1100	ns
		V _{DD} = 10V		225	450	ns
		V _{DD} = 15V		150	300	ns
PLH, tpHL	Inhibit Propagation	$V_{DD} = 5V$		400	800	ns
	Delay Times	V _{DD} = 10V		150	300	ns
		V _{DD} = 15V		100	200	ns
SU	Setup Time	$V_{DD} = 5V$		125	250	ns
		V _{DD} = 10V		50	100	ns
		V _{DD} = 15V		38	38 75	ns
WH	Strobe Pulse Width	$V_{DD} = 5V$		175	350	ns
		V _{DD} = 10V		50	100	ns
	N.A.	V _{DD} = 15V	//	38	75	ns
C _{PD}	Power Dissipation Capacitance	Per Package (Note 5)		150		pF
C _{IN}	Input Capacitance	Any Input (Note 6)		5	7.5	pF

Note 4: AC Parameters are guaranteed by DC correlated testing.

Note 5: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation, see Family Characteristics application note, AN-90

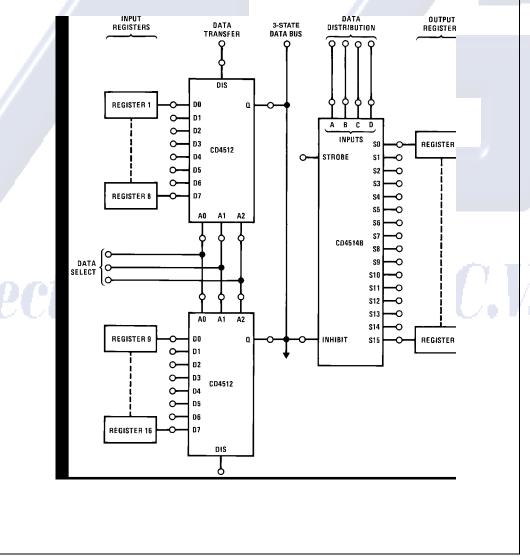
Note 6: Capacitance is guaranteed by periodic testing.

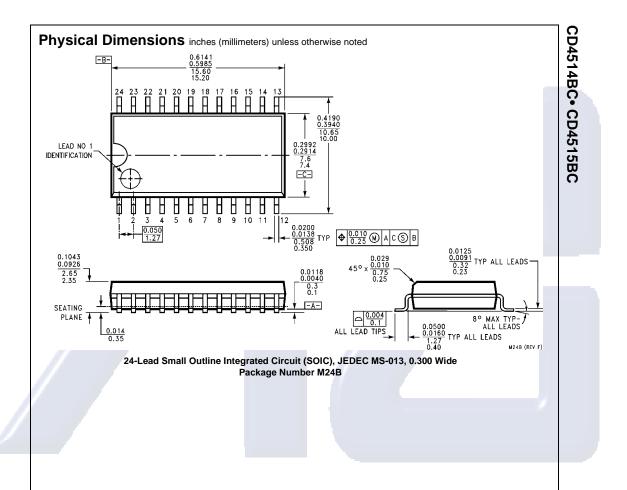
Electrónica S.A. de C.V.

www.agelectronica.com

CD4514BC• CD4515BC

Applications


Two CD4512 8-channel data selectors are used here with the CD4514B 4-bit latch/decoder to effect a complex data routing system. A total of 16 inputs from data registers are selected and transferred via a 3-STATE data bus to a data distributor for rearrangement and entry into 16 output registers. In this way sequential data can be re-routed or intermixed according to patterns determined by data select and distribution inputs.


Data is placed into the routing scheme via the 8 inputs on both CD4512 data selectors. One register is assigned to each input. The signals on A0, A1 and A2 choose 1-of-8 inputs for transfer out to the 3-STATE data bus. A fourth signal, labelled Dis, disables one of the CD4512 selectors, assuring transfer of data from only one register.

In addition to a choice of input registers, 1–16, the rate of transfer of the sequential information can also be varied. That is, if the CD4512 were addressed at a rate that is 8

times faster than the shift frequency of the input registers, the most significant bit (MSB) from each register could be selected for transfer to the data bus. Therefore, all of the most significant bits from all of the registers can be transferred to the data bus before the next most significant bit is presented for transfer by the input registers.

Information from the 3-STATE bus is redistributed by the CD4514B 4-bit latch/decoder. Using the 4-bit address, INA-IND, the information on the inhibit line can be transferred to the addressed output line to the desired output registers, A-P. This distribution of data bits to the output registers can be made in many complex patterns. For example, all of the most significant bits from the input registers can be routed into output register A, all of the next most significant bits into register B, etc. In this way horizontal, vertical, or other methods of data slicing can be implemented.

Electrónica S.A. de C.V.

Electrónica S.A. de C.V.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

www.fairchildsemi.com

8