MJ15023 (PNP), MJ15025 (PNP)

Silicon Power Transistors

The MJ15023 and MJ15025 are power transistors designed for high power audio, disk head positioners and other linear applications.

Features

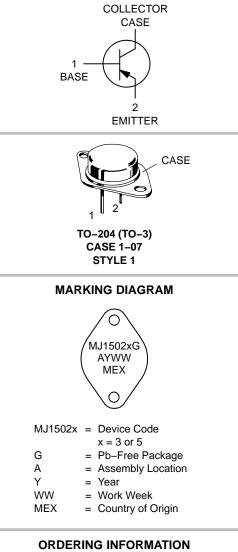
- High Safe Operating Area
- High DC Current Gain
- Complementary to MJ15022 (NPN), MJ15024 (NPN)
- These Devices are Pb-Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage MJ15023 MJ15025	V _{CEO}	200 250	Vdc
Collector–Base Voltage MJ15023 MJ15025	V _{CBO}	350 400	Vdc
Emitter–Base Voltage	V _{EBO}	5	Vdc
Collector-Emitter Voltage	V _{CEX}	400	Vdc
Collector Current – Continuous (Note 1)	Ι _C	16	Adc
Collector Current – Peak (Note 1)	I _{CM}	30	Adc
Base Current – Continuous	Ι _Β	5	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	250 1.43	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Pulse Test: Pulse Width = 5 ms, Duty Cycle \leq 10%.


THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	R_{\thetaJC}	0.70	°C/W

ON Semiconductor®

16 AMPERES SILICON POWER TRANSISTORS 200 – 250 VOLTS, 250 WATTS

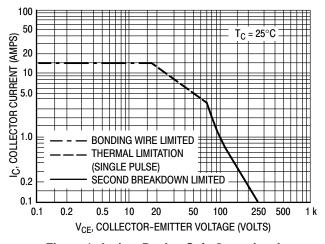
Device	Package	Shipping	
MJ15023G	TO-204 (Pb-Free)	100 Units / Tray	
MJ15025G	TO–204 (Pb–Free)	100 Units / Tray	

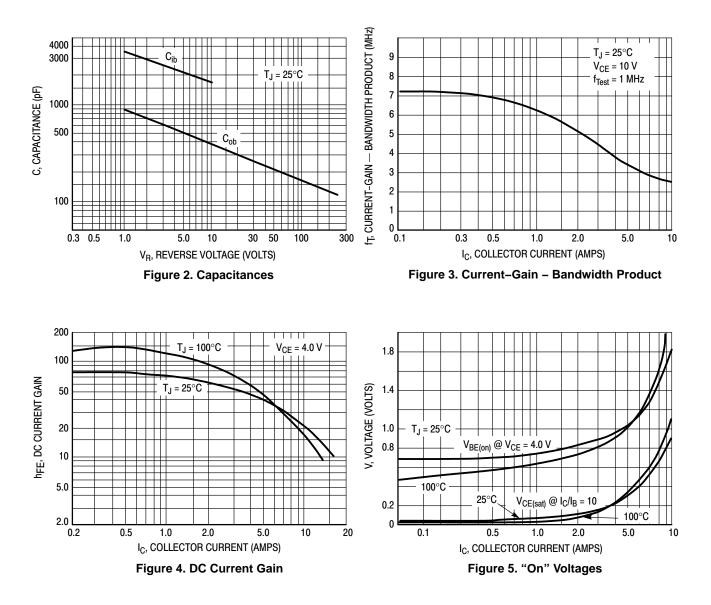
*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MJ15023 (PNP), MJ15025 (PNP)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•	
Collector–Emitter Sustaining Voltage (Note 2) (I _C = 100 mAdc, I _B = 0) MJ15023 MJ15025	V _{CEO(sus)}	200 250		_
Collector Cutoff Current $(V_{CE} = 200 \text{ Vdc}, V_{BE(off)} = 1.5 \text{ Vdc})$ MJ15023 $(V_{CE} = 250 \text{ Vdc}, V_{CE} = 1.5 \text{ Vdc})$	ICEX	_	250	μAdc
(V _{CE} = 250 Vdc, V _{BE(off)} = 1.5 Vdc) MJ15025		_	250	
Collector Cutoff Current (V _{CE} = 150 Vdc, I _B = 0)	I _{CEO}			μAdc
MJ15023 (V _{CF} = 200 Vdc, I _B = 0)		-	500	
MJ15025		-	500	
Emitter Cutoff Current	I _{EBO}			μAdc
(V _{CE} = 5 Vdc, I _B = 0) Both		-	500	
SECOND BREAKDOWN			•	
Second Breakdown Collector Current with Base Forward Biased (V _{CE} = 50 Vdc, t = 0.5 s (non-repetitive)) (V _{CE} = 80 Vdc, t = 0.5 s (non-repetitive))	I _{S/b}	5 2		Adc
ON CHARACTERISTICS				
DC Current Gain ($I_C = 8 \text{ Adc}, V_{CE} = 4 \text{ Vdc}$) ($I_C = 16 \text{ Adc}, V_{CE} = 4 \text{ Vdc}$)	h _{FE}	15 5	60 -	-
Collector–Emitter Saturation Voltage $(I_C = 8 \text{ Adc}, I_B = 0.8 \text{ Adc})$ $(I_C = 16 \text{ Adc}, I_B = 3.2 \text{ Adc})$	V _{CE(sat)}		1.4 4.0	Vdc
Base-Emitter On Voltage (I _C = 8 Adc, V _{CE} = 4 Vdc)	V _{BE(on)}	_	2.2	Vdc
DYNAMIC CHARACTERISTICS			•	•
Current–Gain – Bandwidth Product ($I_C = 1 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f_{test} = 1 \text{ MHz}$)	f _T	4	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f _{test} = 1 MHz)	C _{ob}	_	600	pF

2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2%.

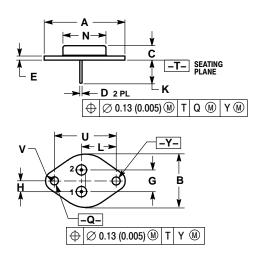



Figure 1. Active–Region Safe Operating Area

There are two limitations on the powerhandling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 1 is based on $T_{J(pk)} = 200^{\circ}$ C; T_{C} is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

MJ15023 (PNP), MJ15025 (PNP)


TYPICAL CHARACTERISTICS

MJ15023 (PNP), MJ15025 (PNP)

PACKAGE DIMENSIONS

TO-204 (TO-3) CASE 1-07 **ISSUE Z**

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	1.550 REF		39.37 REF	
В		1.050		26.67
С	0.250	0.335	6.35	8.51
D	0.038	0.043	0.97	1.09
E	0.055	0.070	1.40	1.77
G	0.430 BSC		10.92 BSC	
Н	0.215 BSC		5.46 BSC	
K	0.440	0.480	11.18	12.19
L	0.665 BSC		16.89 BSC	
Ν		0.830		21.08
Q	0.151	0.165	3.84	4.19
U	1.187 BSC		7 BSC 30.15 BSC	
V	0.131	0.188	3.33	4.77

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR