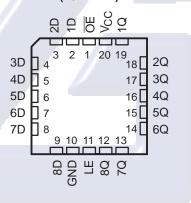
SN54HC573A, SN74HC573A.com **OCTAL TRANSPARENT D-TYPE LATCHES** WITH 3-STATE OUTPUTS

SCLS147B - DECEMBER 1982 - REVISED MAY 1997

- **High-Current 3-State Outputs Drive Bus** Lines Directly or up to 15 LSTTL Loads
- **Bus-Structured Pinout**
- **Package Options Include Plastic** Small-Outline (DW) and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

description

These octal transparent D-type latches feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.


While the latch-enable (LE) input is high, the Q outputs respond to the data (D) inputs. When LE is low, the outputs are latched to retain the data that was set up.

A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

SN54HC573A . . . J OR W PACKAGE SN74HC573A . . . DW OR N PACKAGE (TOP VIEW)

SN54HC573A . . . FK PACKAGE (TOP VIEW)

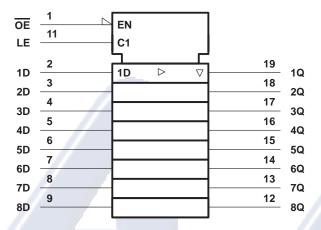
OE does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The SN54HC573A is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC573A is characterized for operation from -40°C to 85°C.

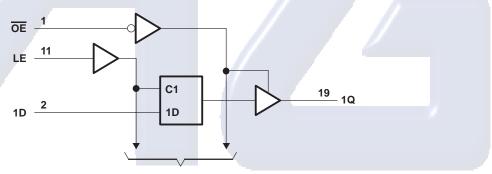
FUNCTION TABLE (each latch)

	INPUTS	OUTPUT	
OE	LE	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	Χ	Q ₀
Н	Χ	Χ	Z

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright @ 1997, Texas Instruments Incorporated


SCLS147B - DECEMBER 1982 - REVISED MAY 1997

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range‡

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$) (see Note 1)	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC}) (see Note 1)	±20 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±35 mA
Continuous current through V _{CC} or GND	±70 mA
Package thermal impedance, θ _{JA} (see Note 2): DW package	97°C/W
N package	67°C/W
Storage temperature range, T _{stg}	_65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

SN54HC573A, SN74HC573A.com OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS SCLS147B - DECEMBER 1982 - REVISED MAY 1997

recommended operating conditions

		SN	SN54HC573A			SN74HC573A			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage		2	5	6	2	5	6	V	
	V _{CC} = 2 V	1.5			1.5				
High-level input voltage	V _{CC} = 4.5 V	3.15			3.15			V	
	V _{CC} = 6 V	4.2			4.2				
Low-level input voltage	V _{CC} = 2 V	0		0.5	0		0.5		
	V _{CC} = 4.5 V	0		1.35	0		1.35	V	
	$V_{CC} = 6 V$	0		1.8	0		1.8		
Input voltage		0		Vcc	0		VCC	V	
Output voltage		0		VCC	0	A	VCC	V	
	V _{CC} = 2 V	0		1000	0		1000		
Input transition (rise and fall) time	$V_{CC} = 4.5 \text{ V}$	0	7/	500	0		500	ns	
	$V_{CC} = 6 V$	0	7/	400	0		400		
Operating free-air temperature		-55	7	125	-40		85	°C	
	Low-level input voltage Input voltage Output voltage Input transition (rise and fall) time	High-level input voltage $ \begin{array}{c} V_{CC} = 2 \ V \\ V_{CC} = 4.5 \ V \\ V_{CC} = 6 \ V \\ \hline V_{CC} = 2 \ V \\ \hline V_{CC} = 2 \ V \\ \hline V_{CC} = 2 \ V \\ \hline V_{CC} = 4.5 \ V \\ \hline V_{CC} = 6 \ V \\ \hline \end{array} $ Input voltage $ \begin{array}{c} V_{CC} = 2 \ V \\ \hline V_{CC} = 2 \ V \\ \hline V_{CC} = 2 \ V \\ \hline V_{CC} = 6 \ V \\ \hline \end{array} $ Input transition (rise and fall) time $ \begin{array}{c} V_{CC} = 2 \ V \\ \hline V_{CC} = 4.5 \ V \\ \hline V_{CC} = 6 \ V \\ \hline \end{array} $	Supply voltage $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Supply voltage VCC = 2 V	MIN NOM MAX MIN NOM NOM Supply voltage 2 5 6 2 5 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 5 6 2 5 5 6 2 5 5 5 6 2 5 5 5 6 2 5 5 5 6 2 5 5 5 6 2 5 5 5 6 2 5 5 6 2 5 5 5 6 2 5 5 5 6 2 5 5 5 6 2 5 5 5 6 2 5 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 6 6 6 6 6 6 6	MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				_							
PARAMETER	TEST CONDITIONS		Voc	T	$A = 25^{\circ}C$:	SN54H	C573A	SN74H	UNIT	
PARAWIETER			Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	ONIT
			2 V	1.9	1.998		1.9		1.9		
//		I _{OH} = -20 μA	4.5 V	4.4	4.499		4.4		4.4		
Voн	VI = VIH or VIL		6 V	5.9	5.999		5.9		5.9		V
		I _{OH} = -6 mA	4.5 V	3.98	4.3		3.7		3.84		
		$I_{OH} = -7.8 \text{ mA}$	6 V	5.48	5.8		5.2		5.34		
			2 V		0.002	0.1		0.1		0.1	
		I _{OL} = 20 μA	4.5 V		0.001	0.1		0.1		0.1	
VOL	VI = VIH or VIL		6 V		0.001	0.1		0.1		0.1	V
	- A	I _{OL} = 6 mA	4.5 V	7	0.17	0.26		0.4	Y	0.33	
HIA	40 F F04	I _{OL} = 7.8 mA	6 V		0.15	0.26		0.4		0.33	
li /	$V_I = V_{CC}$ or 0	7 1 1 4 5	6 V	7 0/	±0.1	±100		±1000	70	±1000	nA
loz	$V_O = V_{CC}$ or 0	·	6 V		±0.01	±0.5		±10		±5	μΑ
lcc	$V_I = V_{CC}$ or 0,	I _O = 0	6 V			8		160		80	μΑ
Ci			2 V to 6 V		3	10		10		10	pF

WWW SNEAHCETTSA, SN74HC573A OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS

SCLS147B - DECEMBER 1982 - REVISED MAY 1997

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

		Vaa	$T_A = 25$		SN54HC573A		A SN74HC573A		UNIT
		VCC	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
		2 V	80		120		100		
t _W	t _W Pulse duration, LE high	4.5 V	16		24		20		ns
		6 V	14		20		17		
	Setup time, data before LE↓	2 V	50		75		63		
t _{su}		4.5 V	10		15		13		ns
		6 V	9		13	-//	11		
	Hold time, data after LE↓	2 V	20		24	7/	24		
th		4.5 V	5		5	/	5		ns
		6 V	5		5		5		

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 1)

DADAMETER	FROM	то	v	T,	Δ = 25°C	3 //	SN54H	C573A	SN74H	C573A	LIAUT	
PARAMETER	(INPUT)	(OUTPUT)	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT	
			2 V		77	175		265		220		
	D	Q	4.5 V		26	35		53		44		
			6 V		23	30		45		38	ns	
^t pd			2 V		87	175		265		220	115	
	LÉ	Any Q	4.5 V		27	35		53		44		
			6 V		23	30		45		38		
			2 V		68	150		225		190		
ten	ŌĒ	Any Q	4.5 V		24	30		45		38	ns	
			6 V		21	26		38		32		
			2 V		47	150		225		190		
^t dis	ŌĒ	Any Q	4.5 V		23	30		45		38	ns	
277	4	7	6 V		21	26		38		32	7	
14/1	ecir	Any Q	2 V		28	60	77	90		75	/	
t _t			Any Q	Any Q	Any Q	4.5 V		8	12		18	
			6 V		6	10		15	4	13		

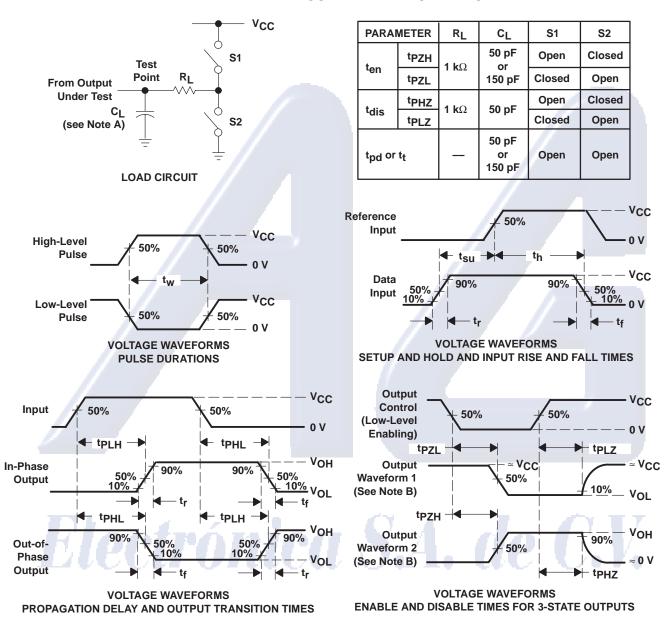
SN54HC573A, SN74HC573A.com OCTAL TRANSPARENT D-TYPE LATCHES

OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS

SCLS147B - DECEMBER 1982 - REVISED MAY 1997

switching characteristics over recommended operating free-air temperature range, C_L = 150 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	Vaa	T,	չ = 25°C	;	SN54H	C573A	SN74H	C573A	UNIT
PARAMETER	(INPUT)	(OUTPUT)	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V		95	200		300		250	
	D	Q	4.5 V		33	40		60		50	
			6 V		21	34		51		43	ns
^t pd	LE	Any Q	2 V		103	225		335		285	115
			4.5 V		33	45		67		57	
			6 V		29	38		57		48	
		Any Q	2 V		85	200		300		250	
t _{en}	ŌĒ		4.5 V		29	40	//	60		50	ns
			6 V		26	34	/	51		43	
		Any Q	2 V		60	210		315		265	
t _t			4.5 V		17	42		63		53	ns
			6 V		14	36		53		45	


operating characteristics, T_A = 25°C

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance per latch	No load	50	pF

Electrónica S.A. de C.V.

SCLS147B - DECEMBER 1982 - REVISED MAY 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and test-fixture capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z $_{O}$ = 50 $\Omega,$ t_{f} = 6 ns, t_{f} = 6 ns.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. tpl 7 and tpHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tplH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

