EAIRCH BEMICOND DM74LS	⊔стоя™ 245	s Transceiv	Vor	Re	wised March 2000
General De These octal bus nous two-way co control function in equirements. The device allows 8 Bus or from the ogic level at the nput (\overline{G}) can be buses are effectiv	escription transceivers are de mmunication betwe nplementation minin dis data transmission f B Bus to the A Bus direction control (DI used to disable th ely isolated.	signed for asynchro- ten data buses. The mizes external timing from the A Bus to the a depending upon the R) input. The enable e device so that the	Features Bi-Directional package 3-STATE outp PNP inputs re Hysteresis at Typical propa	buts drive bus line educe DC loading bus inputs improv gation delay times e/disable times 17 ent)	on bus lines e noise margins a, port-to-port 8 ns
Ordering C Order Number DM74LS245WM DM74LS245SJ DM74LS245SJ	Package Number M20B M20D N20A	20-Lead Small Outline 20-Lead Small Outline 20-Lead Plastic Dual-I	e Integrated Circuit e Package (SOP), I	EIAJ TYPE II, 5.3n	nm Wide
Devices also available Connection V _{CC} \overline{G} B1 20 19 18 19 18 19 18 19 18 19 18 10 19 18 10 18 10 19 18	n Diagram	by appending the suffix lette	r "X" to the ordering coc Function Enable G L L H H = HIGH Level L = LOW Level X = Irrelevant		Operation B Data to A Bus A Data to B Bus Isolation

DM74LS245

Absolute Maximum Ratings(Note 1)

Supply Voltage	7V
Input Voltage	
DIR or \overline{G}	7V
A or B	5.5V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions the caterior device according. for actual device operation.

Recommended Operating Conditions

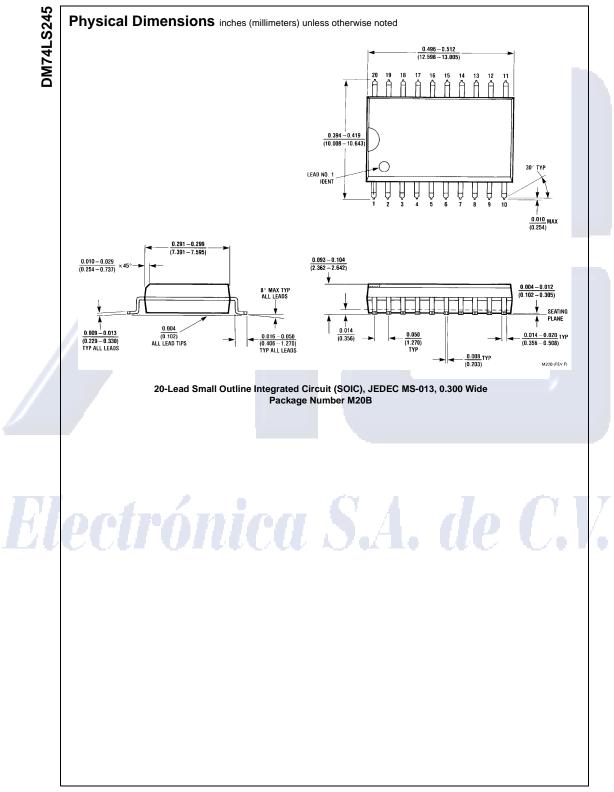
Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
I _{OH}	HIGH Level Output Current			-15	mA
I _{OL}	LOW Level Output Current			24	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics

Symbol	Parameter	Co	nditions		Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 n$	nA				-1.5	V
HYS	Hysteresis (V _{T+} – V _{T-})	V _{CC} = Min			0.2	0.4		V
V _{OH}	HIGH Level Output Voltage	$V_{CC} = Min, V_{IH} = Min$ $V_{IL} = Max, I_{OH} = -1 r$	mA		2.7			1
		$V_{CC} = Min, V_{IL} = Min$ $V_{IL} = Max, I_{OH} = -3 r$	mA		2.4	3.4		V
		$V_{CC} = Min, V_{IH} = Min$ $V_{IL} = 0.5V, I_{OH} = Max$			2			
V _{OL}	LOW Level	$V_{CC} = Min$	$I_{OL} = 12 \text{ mA}$				0.4	
	Output Voltage	V _{IL} = Max V _{IH} = Min	I _{OL} = Max				0.5	V
I _{OZH}	Off-State Output Current, HIGH Level Voltage Applied	V _{CC} = Max V _{IL} = Max	V _O = 2.7V				20	μA
I _{OZL}	Off-State Output Current, LOW Level Voltage Applied	V _{IH} = Min	V _O = 0.4V	A		172	-200	μA
$\mathbf{h} = \mathbf{h}$	Input Current at Maximum	V _{CC} = Max	A or B	/ _I = 5.5V			0.1	mA
	Input Voltage		DIR or G	/ ₁ = 7V			0.1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_{I} = 2.7$	/				20	μΑ
I _{IL}	LOW Level Input Current	$V_{CC} = Max, V_{I} = 0.4$	/				-0.2	mA
l _{os}	Short Circuit Output Current	V _{CC} = Max (Note 3)			-40		-225	mA
I _{CC}	Supply Current	Outputs HIGH				48	70	
		Outputs LOW	١	/ _{CC} = Max		62	90	mA
		Outputs at Hi-Z				64	95	

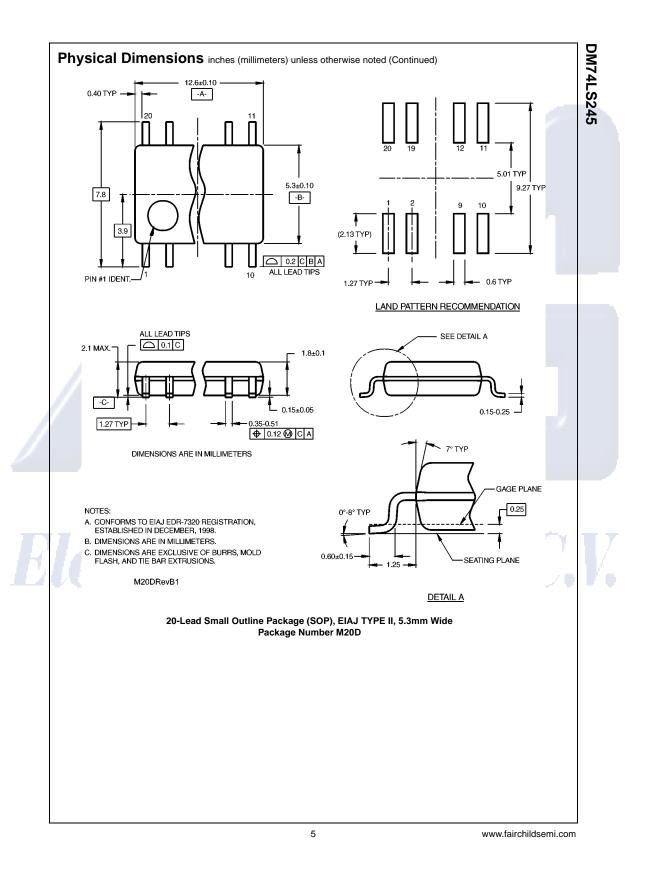
Note 2: All typicals are at V_{CC} = 5V, T_A = 25^{\circ}C.

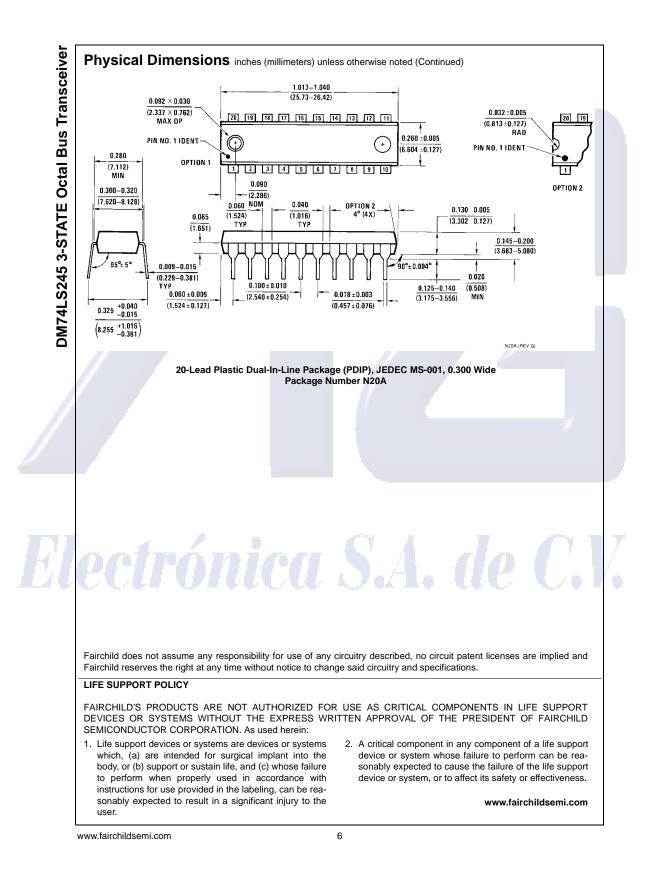
Note 3: Not more than one output should be shorted at a time, not to exceed one second duration


www.fairchildsemi.com

Symbol	Parameter	Conditions	Min	Max	Units
t _{PLH}	Propagation Delay Time,	C _L = 45 pF		12	
	LOW-to-HIGH Level Output	$R_L = 667\Omega$		12	ns
t _{PHL}	Propagation Delay Time,			12	1
	HIGH-to-LOW Level Output			12	ns
t _{PZL}	Output Enable Time			40	ns
	to LOW Level			40	115
t _{PZH}	Output Enable Time			40	ns
	to HIGH Level			40	115
t _{PLZ}	Output Disable Time	C _L = 5 pF		25	ns
	from LOW Level	$R_L = 667\Omega$		25	115
t _{PHZ}	Output Disable Time			25	ns
	from HIGH Level			25	113
t _{PLH}	Propagation Delay Time,	C _L = 150 pF		16	ns
	LOW-to-HIGH Level Output	$R_L = 667\Omega$		10	113
t _{PHL}	Propagation Delay Time,		11	17	ns
	HIGH-to-LOW Level Output				113
t _{PZL}	Output Enable Time			45	ns
	to LOW Level			70	113
t _{PZH}	Output Enable Time			45	ns
	to HIGH Level			45	113

Electrónica S.A. de C.V.


3


www.fairchildsemi.com

www.fairchildsemi.com

4

