
Dual JK Flip-Flop with Set and Clear

The SN74LS76A offers individual J, K, Clock Pulse, Direct Set and Direct Clear inputs. These dual flip-flops are designed so that when the clock goes HIGH, the inputs are enabled and data will be accepted. The Logic Level of the J and K inputs will perform according to the Truth Table as long as minimum set-up times are observed. Input data is transferred to the outputs on the HIGH-to-LOW clock transitions.

MODE SELECT - TRUTH TABLE

OPERATING		INP	OUTPUTS			
MODE	S _D ∕	<u>C</u> D	J	K	Q	Q
Set	L/	Н	Х	Х	Н	L
Reset (Clear)	Н	L	Χ	Χ	L	Н
*Undetermined	L	L	Χ	Х	Н	Н
Toggle	Н	H	h	h	q	q
Load "0" (Reset)	Н	Н	- 1	h	L	Н
Load "1" (Set)	Н	Н	h	1	Н	L
Hold	Н	Н	I	I	q	q

H, h = HIGH Voltage Level

L, I = LOW Voltage Level

X = Immaterial

I, h (q) = Lower case letters indicate the state of the referenced input

(or output) one setup time prior to the HIGH–to–LOW clock transition

ónica S.A

1

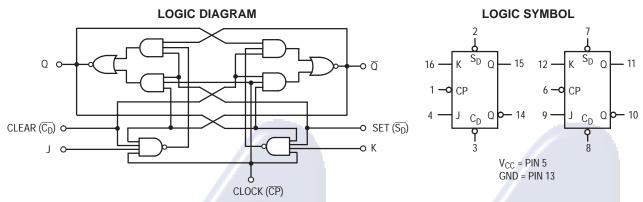
ON Semiconductor

Formerly a Division of Motorola http://onsemi.com

> LOW POWER SCHOTTKY

N SUFFIX CASE 648

SOIC D SUFFIX CASE 751B


GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	Supply Voltage	4.75	5.0	5.25	V
T _A	Operating Ambient Temperature Range		25	70	°C
I _{OH} Output Current – High				-0.4	mA
loL	Output Current – Low			8.0	mA

ORDERING INFORMATION

Device	Package	Shipping		
SN74LS76AN	SN74LS76AN 16 Pin DIP			
SN74LS76AD	16 Pin	2500/Tape & Reel		

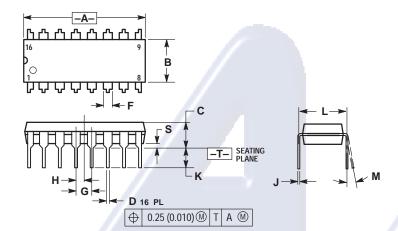
www.agelectronica.com

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

				Limits			//	
Symbol	Parameter			Тур	Max	Unit	Test Co	onditions
V _{IH}	Input HIGH Voltage					V	Guaranteed Input HIGH Voltage for All Inputs	
V _{IL}	Input LOW Voltage				0.8	V	Guaranteed Input LOW Voltage for All Inputs	
V _{IK}	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} = -$	-18 mA
V _{OH}	Output HIGH Voltage		2.7	3.5	/	V	V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH} or V_{IL} per Truth Table	
.,	Output LOW Voltage			0.25	0.4	V	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$
V _{OL}				0.35	0.5	V	I _{OL} = 8.0 mA	$V_{IN} = V_{IL}$ or V_{IH} per Truth Table
	Input HIGH Current J, K Clear Clock J, K Clear Clock Clock				20 60 80	μА	V _{CC} = MAX, V _{IN} =	= 2.7 V
l _{IH}					0.1 0.3 0.4	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
I _{IL}	Input LOW Current J, K Clear, Clock			47	-0.4 -0.8	mA	V _{CC} = MAX, V _{IN} =	= 0.4 V
I _{OS}	Short Circuit Current (Note 1)	t Current (Note 1)			-100	mA	$V_{CC} = MAX$	' 1 /
I _{CC}	Power Supply Current	1140		17	6.0	mA	$V_{CC} = MAX$	/0 7 0

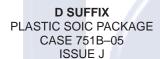
Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

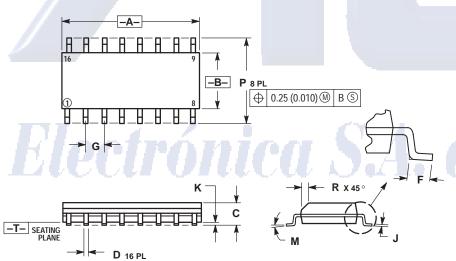
AC CHARACTERISTICS ($T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$)


		Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
f _{MAX}	Maximum Clock Frequency	30	45		MHz		
t _{PLH}	Clock Cloor Set to Output		15	20	ns	$V_{CC} = 5.0 \text{ V}$ $C_{L} = 15 \text{ pF}$	
t _{PHL}	Clock, Clear, Set to Output		15	20	ns	- '	

AC SETUP REQUIREMENTS $(T_A = 25^{\circ}C)$

		Limits		Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
t _W	Clock Pulse Width High	20			ns		
t _W	Clear Set Pulse Width	25			ns	V 50V	
t _S	Setup Time	20			ns	V _{CC} = 5.0 V	
t _h	Hold Time	0			ns		


PACKAGE DIMENSIONS


N SUFFIX PLASTIC PACKAGE CASE 648-08 ISSUE R

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- DIMENSIONING AND TOLERANGING FER AN.
 714.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEADS WHEN
 FORMED PARALLEL.
- DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 ROUNDED CORNERS OPTIONAL.

		INC	HES	MILLIN	IETERS			
	DIM	MIN	MAX	MIN	MAX			
	Α	0.740	0.770	18.80	19.55			
	В	0.250	0.270	6.35	6.85			
	С	0.145	0.175	3.69	4.44			
	D	0.015	0.021	0.39	0.53			
	F	0.040	0.70	1.02	1.77			
1	G	0.100	BSC	2.54 BSC				
	Н	0.050	BSC	1.27 BSC				
	J	0.008	0.015	0.21	0.38			
	K	0.110	0.130	2.80	3.30			
	L	0.295	0.305	7.50	7.74			
	M	0 °	10 °	0°	10 °			
	S	0.020	0.040	0.51	1.01			

⊕ 0.25 (0.010) M T B S A S

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- Indirensioning and Tolerranging Per Air Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 IDMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
 MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INCHES			
DIM	MIN MAX		MIN	MAX		
Α	9.80	10.00	0.386	0.393		
В	3.80	4.00	0.150	0.157		
С	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27	BSC	0.050	BSC		
J	0.19	0.25	0.008	0.009		
K	0.10	0.25	0.004	0.009		
M	0 °	7°	0°	7°		
Р	5.80	6.20	0.229	0.244		
R	0.25 0.50		0.010	0.019		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549

Phone: 81–3–5487–8345 **Email**: r14153@onsemi.com

Fax Response Line: 303-675-2167

800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.

SN74LS76A/D