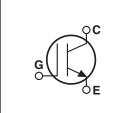


*G Denotes RoHS Compliant, Pb Free Terminal Finish.

Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra low $V_{\text{CE}(ON)}$ and are ideal for low frequency applications that require absolute minimum conduction loss. Easy paralleling is a result of very tight parameter distribution and a slightly positive $V_{\text{CE}(ON)}$ temperature coefficient. A built-in gate resistor ensures extremely reliable operation, even in the event of a short circuit fault. Low gate charge simplifies gate drive design and minimizes losses.



• 1200V Field Stop

Trench Gate: Low V_{CE(on)}

Easy Paralleling

Integrated Gate Resistor: Low EMI, High Reliability

Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS

MAXIMUM RATINGS

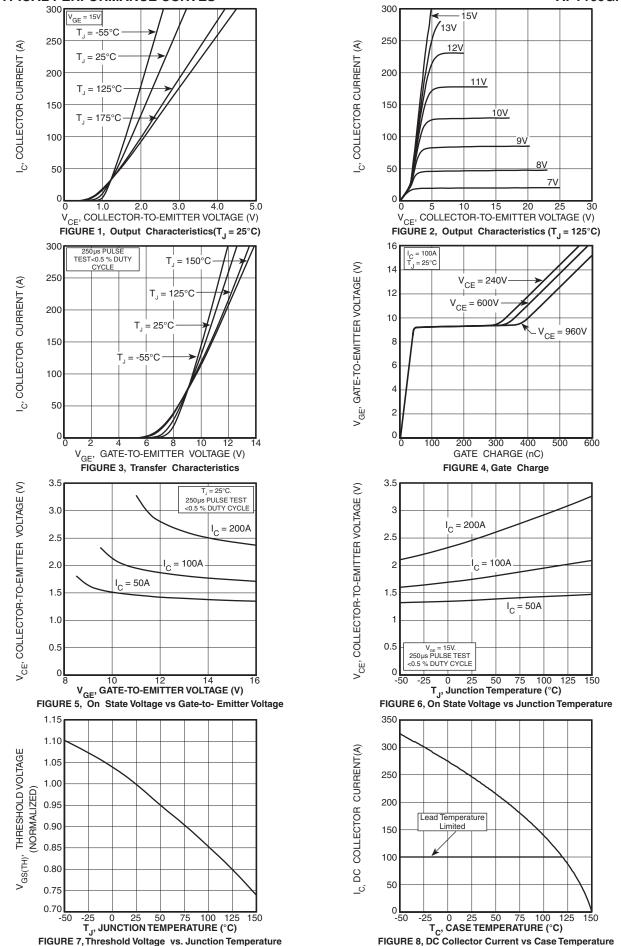
All Ratings: T_C = 25°C unless otherwise specified.

Symbol	Parameter	APT100GN120B2	UNIT
V _{CES}	Collector-Emitter Voltage	1200	Volts
V_{GE}	Gate-Emitter Voltage	±30	VOILS
I _{C1}	Continuous Collector Current @ T _C = 25°C [®]	245	
I _{C2}	Continuous Collector Current @ T _C = 110°C [®]	100	Amps
I _{CM}	Pulsed Collector Current ①	300	
SSOA	Switching Safe Operating Area @ T _J = 150°C	300A @ 1200V	
P _D	Total Power Dissipation	960	Watts
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150	00
T _L	Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.	300	°C

STATIC ELECTRICAL CHARACTERISTICS

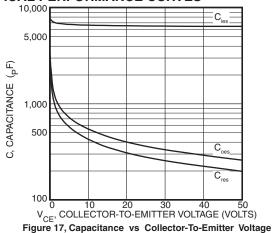
Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	Units
V _{(BR)CES}	Collector-Emitter Breakdown Voltage $(V_{GE} = 0V, I_C = 4mA)$	1200			Volts
V _{GE(TH)}	Gate Threshold Voltage $(V_{CE} = V_{GE}, I_{C} = 4mA, T_{j} = 25^{\circ}C)$	5.0	5.8	6.5	
V _{CE(ON)}	Collector-Emitter On Voltage $(V_{GE} = 15V, I_C = 100A, T_j = 25^{\circ}C)$	1.4	1.7	2.1	
	Collector-Emitter On Voltage $(V_{GE} = 15V, I_C = 100A, T_j = 125^{\circ}C)$		2.0		
I _{CES}	Collector Cut-off Current $(V_{CE} = 1200V, V_{GE} = 0V, T_j = 25^{\circ}C)^{2}$			100	μΑ
	Collector Cut-off Current (V _{CE} = 1200V, V _{GE} = 0V, T _j = 125°C) (2)			TBD	
I _{GES}	Gate-Emitter Leakage Current (V _{GE} = ±20V)			600	nA
R _{G(int)}	Integrated Gate Resistor		7.5		Ω

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.


Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{ies}	Input Capacitance	Capacitance		6500		
C _{oes}	Output Capacitance	$V_{GE} = 0V, \ V_{CE} = 25V$		365		pF
C _{res}	Reverse Transfer Capacitance	f = 1 MHz		280		
V _{GEP}	Gate-to-Emitter Plateau Voltage	Gate Charge		9.5		V
Q_{g}	Total Gate Charge ^③	V _{GE} = 15V		540		
Q _{ge}	Gate-Emitter Charge	V _{CE} = 600V		50		nC
Q_{gc}	Gate-Collector ("Miller") Charge	I _C = 100A		295		
SSOA	Switching Safe Operating Area	$T_J = 150$ °C, $R_G = 4.3\Omega$?, $V_{GE} = 15V$, $L = 100\mu H, V_{CE} = 1200V$	300			А
t _{d(on)}	Turn-on Delay Time	Inductive Switching (25°C)		50		
t _r	Current Rise Time	V _{CC} = 800V		50		
t _{d(off)}	Turn-off Delay Time	V _{GE} = 15V		615		ns
t _f	Current Fall Time	I _C = 100A		105		
E _{on1}	Turn-on Switching Energy ⁴	$R_{G} = 1.0\Omega^{\bigcirc}$		11		
E _{on2}	Turn-on Switching Energy (Diode) ^⑤	$T_J = +25^{\circ}C$		15		mJ
E _{off}	Turn-off Switching Energy ⁶			9.5		
t _{d(on)}	Turn-on Delay Time	Inductive Switching (125°C)		50		
t _r	Current Rise Time	V _{CC} = 800V		50		20
t _{d(off)}	Turn-off Delay Time	V _{GE} = 15V		725		ns
t _f	Current Fall Time	I _C = 100A		210		
E _{on1}	Turn-on Switching Energy ⁴	$R_{G} = 1.0\Omega^{\bigcirc}$		12		
E _{on2}	Turn-on Switching Energy (Diode) ^⑤	$T_{J} = +125^{\circ}C$		22		mJ
E _{off}	Turn-off Switching Energy ⁶	7		14		

THERMAL AND MECHANICAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction to Case (IGBT)			.13	°C/W
$R_{\theta JC}$	Junction to Case (DIODE)			N/A	
W _T	Package Weight		6.1		gm


- 1 Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2 For Combi devices, \textbf{I}_{ces} includes both IGBT and FRED leakages
- ③ See MIL-STD-750 Method 3471.
- (4) E_{on1} is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
- (5) E_{on2} is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.)
- (6) E_{off} is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
- \bigcirc R_G is external gate resistance, not including R_{G(int)} nor gate driver impedance. (MIC4452)
- 8 Continuous Current limited by package lead temperature.

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

12-2007

TYPICAL PERFORMANCE CURVES

APT100GN120B2

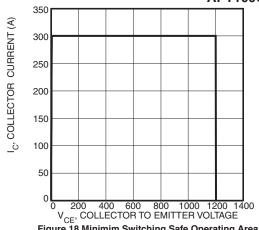
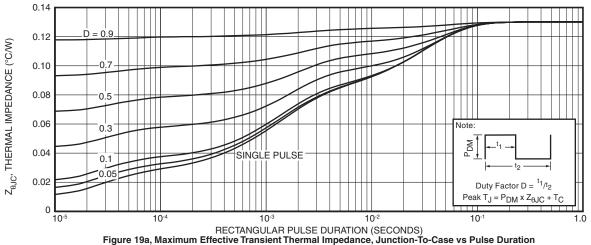



Figure 18, Minimim Switching Safe Operating Area

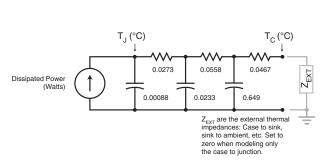


FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL

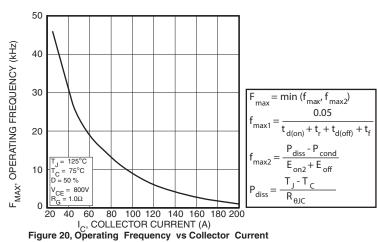


Figure 21, Inductive Switching Test Circuit

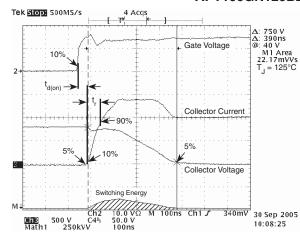


Figure 22, Turn-on Switching Waveforms and Definitions

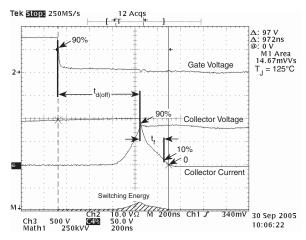
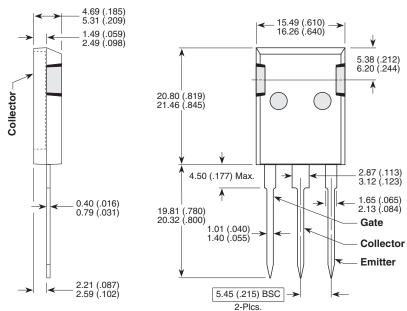



Figure 23, Turn-off Switching Waveforms and Definitions

T-MAX® (B2) Package Outline

e1 SAC: Tin, Silver, Copper

Dimensions in Millimeters and (Inches)

Microsemi's products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.