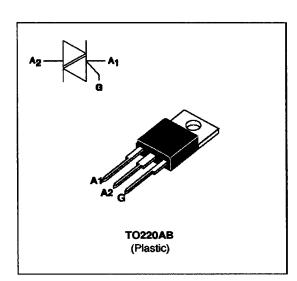


SNUBBERLESS TRIACS

FEATURES

■ HIGH COMMUTATION: (dl/dt)c > 7A/ms without snubber

■ HIGH SURGE CURRENT : ITSM = 80A


■ V_{DRM} UP TO 800V

■ BTA Family:

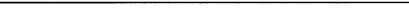
INSULATING VOLTAGE = 2500V(RMS) (UL RECOGNIZED : E81734)

DESCRIPTION

The BTA/BTB08 BW/CW triac family are high performance glass passivated chips technology. The SNUBBERLESS™ concept offer suppression of RC network and it is suitable for application such as phase control and static switching on inductive or resistive load.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit		
IT(RMS)	RMS on-state current	вта	Tc = 90 °C	8	Α
	(360° conduction angle)	втв	Tc = 95 °C		
ITSM	Non repetitive surge peak on-state curren	tp = 8.3 ms	85	Α	
	(Tj initial = 25°C)	tp = 10 ms	80		
l2t	I ² t value	tp = 10 ms	32	A2s	
dl/dt	dl/dt Critical rate of rise of on-state current Gate supply: IG = 500mA dig/dt = 1A/µs		Repetitive F = 50 Hz	20	A/μs
			Non Repetitive	100	
Tstg Tj	Storage and operating junction temperature range			- 40 to + 150 - 40 to + 125	ဗ္
Tì	Maximum lead temperature for soldering during 10 s at 4.5 mm from case			260	•c


Symbol	Parameter	BTA / BTB08 BW/CW				Unit
		400	600	700	800	
VDRM VRRM	Repetitive peak off-state voltage Tj = 125 °C	400	600	700	800	V

1/5 March 1995

7929237 0065435 465 📟

This Material Copyrighted By Its Respective Manufacturer

THERMAL RESISTANCES

Symbol	nbol Parameter		Value	Unit	
Rth (j-a)	Junction to ambient	60	•c/w		
Rth (j-c) DC	Junction to case for DC	ВТА	4.4	•c/w	
		втв	3.3		
Rth (j-c) AC	Junction to case for 360° conduction angle (F= 50 Hz)	ВТА	3.3	•c/w	
	(F= 50 Hz)	втв	2.5		

GATE CHARACTERISTICS (maximum values)

PG (AV) = 1W $PGM = 10W (tp = 20 \mu s)$ $I_{GM} = 4A (tp = 20 \mu s)$ $V_{GM} = 16V (tp = 20 \mu s)$.

ELECTRICAL CHARACTERISTICS

Symbol	Test Conditions		Quadrant		Su	ffix	Unit
-					BW	CW	
lGT	VD=12V (DC) RL=33Ω	Tj=25°C	1-11-111	MIN	2	1	mA
				MAX	50	35	
VGT	V _D =12V (DC) R _L =33Ω	Tj=25°C	1-11-111	MAX	1	.5	٧
VGD	VD=VDRM RL=3.3kΩ	Tj≖125°C	1-11-111	MIN	0	.2	٧
tgt	VD=VDRM IG = 500mA diG/dt = 3A/μs	Tj=25°C	1-11-111	ТҮР		2	μs
1_	IG=1.2 IGT	Tj=25°C	1-111	TYP	40	-	mA
			H	TYP	80	-	
			1-111	MAX	-	50	
			11	MAX	-	80	
lн *	IT= 500mA gate open	Tj=25°C		MAX	50	35	mA
∨ _{TM} *	I _{TM} = 11A tp= 380μs	Tj=25°C		MAX	1.	.75	٧
IDRM	V _{DRM} Rated	Tj=25°C		MAX	0.	.01	mA
IRRM	VRRM Rated	Tj=125°C		MAX		2	
dV/dt *	Linear slope up to V _D =67%V _{DRM}	Tj=125°C		MIN	500	250	V/µs
	gate open			TYP	750	500	
(dl/dt)c *	Without snubber	Tj=125°C		MIN	7	4.5	A/ms
				TYP	14	9	

^{*} For either polarity of electrode A2 voltage with reference to electrode A1.

2/5

SGS-THOMSON

💶 7929237 0065436 3T1 🖿

This Material Copyrighted By Its Respective Manufacturer

+

ORDERING INFORMATION

Package	lt(RMS)	VDRM / VRRM	Sensitivity Specification		
	A	v	BW	CW	
ВТА	8	400	X	Х	
(Insulated)		600	X	X	
		700	X	Х	
		800	Х	X	
втв		400	X	Х	
(Uninsulated)		600	X	Х	
		700	Х	X	
		800	Х	Х	

Fig.1: Maximum RMS power dissipation versus RMS on-state current (F=50Hz). (Curves are cut off by (dl/dt)c limitation)

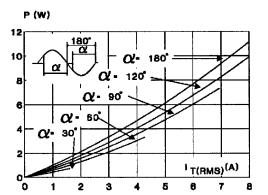


Fig.2 : Correlation between maximum RMS power dissipation and maximum allowable temperatures (T_{amb} and T_{case}) for different thermal resistances heatsink + contact (BTA).

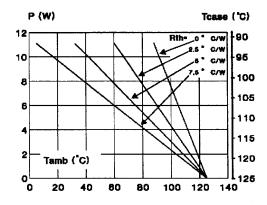


Fig.3 : Correlation between maximum RMS power dissipation and maximum allowable temperatures (Tamb and T_{Case}) for different thermal resistances heatsink + contact (BTB).

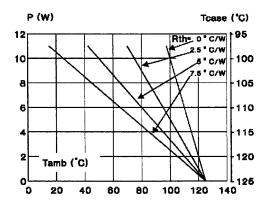
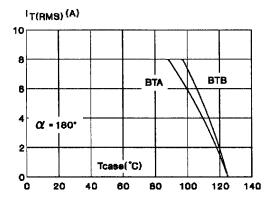



Fig.4: RMS on-state current versus case temperature.

SGS-THOMSON NACROELECTRONICS

3/5

🖿 7929237 OO65437 238 🖿

This Material Copyrighted By Its Respective Manufacturer

Fig.5: Relative variation of hermal impedance versus pulse duration.

Fig.6 : Relative variation of gate trigger current and holding current versus junction temperature.

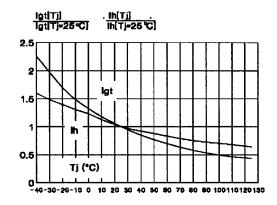


Fig.7: Non Repetitive surge peak on-state current versus number of cycles.

Fig.8 : Non repetitive surge peak on-state current for a sinusoidal pulse with width : t \leq 10ms, and corresponding value of l²t.

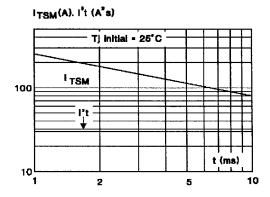
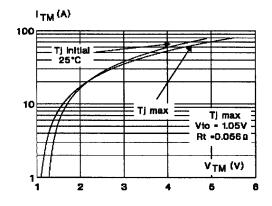
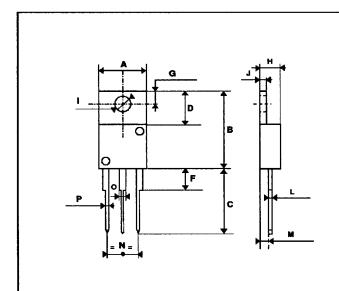



Fig.9: On-state characteristics (maximum values).

SGS-THOMSON MIGROELEGTEONICS


7929237 0065438 174

This Material Copyrighted By Its Respective Manufacturer

4/5

PACKAGE MECHANICAL DATA

TO220AB Plastic

REF.	DIMENSIONS				
	Millimeters		Inches		
	Min.	Max.	Min.	Max.	
A	10.20	10.50	0.401	0.413	
В	14.23	15.87	0.560	0.625	
С	12.70	14.70	0.500	0.579	
D	5.85	6.85	0.230	0.270	
F		4.50		0.178	
G	2.54	3.00	0.100	0.119	
Н	4.48	4.82	0.176	0.190	
1	3.55	4.00	0.140	0.158	
J	1.15	1.39	0.045	0.055	
L	0.35	0.65	0.013	0.026	
M	2.10	2.70	0.082	0.107	
N	4.58	5.58	0.18	0.22	
0	0.80	1.20	0.031	0.048	
Р	0.64	0.96	0.025	0.038	

Cooling method: C Weight: 2.3 g
Recommended torque value: 0.8 m.N.

Maximum torque value : 1 m.N.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-T HOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all

information previously supplied.

SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

5/5

7929237 0065439 000 🚥

This Material Copyrighted By Its Respective Manufacturer