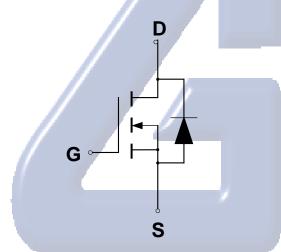

CMT18N20 Power Field Effect Transistor

## **GENERAL DESCRIPTION**


This Power MOSFET is designed for low voltage, high speed power switching applications such as switching regulators, converters, solenoid and relay drivers.

## FEATURES

- Silicon Gate for Fast Switching Speeds
- Low R<sub>DS(on)</sub> to Minimize On-Losses. Specified at Elevated Temperature
- Rugged SOA is Power Dissipation Limited
- Source-to-Drain Characterized for Use With Inductive Loads



# SYMBOL



N-Channel MOSFET

### **ORDERING INFORMATION**

1 2 3

|              |         | - <b>6</b> . 7 <b>6</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|--------------|---------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Part Number  | Package |                         | ad and a second |  |
| CMT18N20N220 | TO-220  | X744 I.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

#### **ABSOLUTE MAXIMUM RATINGS**

| Rating                                                                                     |               | Value      | Unit |
|--------------------------------------------------------------------------------------------|---------------|------------|------|
| Drain to Current – Continuous                                                              |               | 18         | А    |
| <ul> <li>Pulsed</li> </ul>                                                                 |               | 72         |      |
| Gate-to-Source Voltage – Continue                                                          |               | ±20        | V    |
| <ul> <li>Non-repetitive</li> </ul>                                                         | $V_{GSM}$     | ±40        | V    |
| Total Power Dissipation                                                                    | PD            | 125        | W    |
| Derate above 25°C                                                                          |               | 1.00       | W/°C |
| Operating and Storage Temperature Range                                                    |               | -55 to 150 | °C   |
| Single Pulse Drain-to-Source Avalanche Energy $-$ T <sub>J</sub> = 25 $^\circ\!\mathbb{C}$ |               | 224        | mJ   |
| $(V_{DD}$ = 100V, $V_{GS}$ = 10V, $I_{L}$ = 18A, L = 1.38mH, $R_{G}$ = 25 $\Omega$ )       |               |            |      |
| Thermal Resistance – Junction to Case                                                      |               | 1.00       | °C/W |
| <ul> <li>Junction to Ambient</li> </ul>                                                    | $\theta_{JA}$ | 62.5       |      |
| Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds             | TL            | 260        | °C   |

(1) Pulse Width and frequency is limited by TJ(max) and thermal response

-



CMT18N20 Power Field Effect Transistor

### **ELECTRICAL CHARACTERISTICS**

Unless otherwise specified,  $T_J$  = 25  $^\circ\!\mathrm{C}$  .

|                                                                                    |                                                                                                                                         |                     | CMT18N20               |     |     |       |       |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|-----|-----|-------|-------|
| Characteristic                                                                     |                                                                                                                                         |                     | Symbol                 | Min | Тур | Max   | Units |
| Drain-Source Breakdown Voltage                                                     |                                                                                                                                         |                     | V <sub>(BR)DSS</sub>   | 200 |     |       | V     |
| (V <sub>GS</sub> = 0 V, I <sub>D</sub> = 250 μA)                                   |                                                                                                                                         |                     |                        |     |     |       |       |
| Drain-Source Leakage Current                                                       |                                                                                                                                         |                     | I <sub>DSS</sub>       |     |     |       | mA    |
| $(V_{DS} = Rated V_{DSS}, V_{GS} = 0 V)$                                           |                                                                                                                                         |                     |                        |     |     | 0.025 |       |
| $(V_{DS} = 0.8 Rated V_{DSS}, V_{GS} = 0 V, T_J = 125^{\circ}C)$                   |                                                                                                                                         |                     |                        |     | /   | 1.0   |       |
| Gate-Source Leakage Current-Forward                                                |                                                                                                                                         |                     | I <sub>GSSF</sub>      |     |     | 100   | nA    |
| $(V_{gsf} = 20 V, V_{DS} = 0 V)$                                                   |                                                                                                                                         |                     |                        |     |     |       |       |
| Gate-Source Leakage Current-Reverse                                                |                                                                                                                                         |                     | I <sub>GSSR</sub>      |     |     | 100   | nA    |
| $(V_{gsr} = 20 V, V_{DS} = 0 V)$                                                   |                                                                                                                                         |                     |                        |     |     |       |       |
| Gate Threshold Voltage                                                             |                                                                                                                                         |                     | V <sub>GS(th)</sub>    | 2.0 |     | 4.0   | V     |
| $(V_{DS} = V_{GS}, I_D = 250 \ \mu A)$                                             |                                                                                                                                         |                     |                        |     |     |       |       |
| Static Drain-Source On-Resistance (V <sub>GS</sub> = 10 V, I <sub>D</sub> = 10A) * |                                                                                                                                         |                     | R <sub>DS(on)</sub>    |     |     | 0.18  | Ω     |
| Drain-Source On-Voltage (V <sub>GS</sub> = 10 V                                    | 1)                                                                                                                                      | V <sub>DS(on)</sub> |                        |     | 6.0 | V     |       |
| (I <sub>D</sub> = 5.0 A)                                                           | (I <sub>D</sub> = 5.0 A)                                                                                                                |                     |                        |     |     |       |       |
| Forward Transconductance (V <sub>DS</sub> = 50                                     | ) V, I <sub>D</sub> = 10 A) *                                                                                                           |                     | <b>g</b> <sub>FS</sub> | 6.8 |     |       | mhos  |
| Input Capacitance                                                                  | (V <sub>DS</sub> = 25 V, V                                                                                                              | $l_{1} = 0 V$       | C <sub>iss</sub>       |     |     | 1600  | pF    |
| Output Capacitance                                                                 | $(v_{DS} = 23 v, V)$<br>f = 1.0 N                                                                                                       |                     | Coss                   |     |     | 750   | pF    |
| Reverse Transfer Capacitance                                                       | 1 - 1.0 W                                                                                                                               | 11 12)              | C <sub>rss</sub>       |     |     | 300   | pF    |
| Turn-On Delay Time                                                                 | ()/ - 20.)/                                                                                                                             | - 10 4              | t <sub>d(on)</sub>     |     |     | 30    | ns    |
| Rise Time                                                                          | $(V_{DD} = 30 \text{ V}, \text{ I}_{D} = 10 \text{ A},$<br>$V_{GS} = 10 \text{ V},$<br>$R_{G} = 4.7\Omega) *$                           |                     | tr                     |     |     | 60    | ns    |
| Turn-Off Delay Time                                                                |                                                                                                                                         |                     | t <sub>d(off)</sub>    |     |     | 80    | ns    |
| Fall Time                                                                          | $R_G = 4.7\Omega)^{-1}$                                                                                                                 |                     | t <sub>f</sub>         |     |     | 60    | ns    |
| Total Gate Charge                                                                  | $(V_{\text{DS}} = 0.8 \text{Rated } V_{\text{DSS}}, I_{\text{D}} = \text{Rated } I_{\text{D}},$ $V_{\text{GS}} = 10 \text{ V})^{\star}$ |                     | Qg                     |     | 36  | 63    | nC    |
| Gate-Source Charge                                                                 |                                                                                                                                         |                     | Q <sub>gs</sub>        |     | 16  |       | nC    |
| Gate-Drain Charge                                                                  |                                                                                                                                         |                     | Q <sub>gd</sub>        |     | 26  |       | nC    |
| Internal Drain Inductance                                                          |                                                                                                                                         |                     | Lo                     |     | 4.5 |       | nH    |
| (Measured from the drain lead 0.25" from package to center of die)                 |                                                                                                                                         |                     | КА                     |     |     |       | 1     |
| Internal Drain Inductance                                                          |                                                                                                                                         |                     | L Ls                   |     | 7.5 | 2 m 🛛 | nH    |
| (Measured from the source lead 0.2                                                 | 25" from package to sou                                                                                                                 | rce bond pad)       |                        |     |     |       |       |
| SOURCE-DRAIN DIODE CHARACT                                                         | ERISTICS                                                                                                                                |                     | _                      |     |     |       |       |
| Forward On-Voltage(1)                                                              |                                                                                                                                         |                     | V <sub>SD</sub>        |     |     | 1.5   | V     |
| Forward Turn-On Time                                                               | (I <sub>s</sub> = Rated I <sub>D</sub> ,<br>d <sub>IS</sub> /d <sub>t</sub> = 100A/µs)                                                  |                     | t <sub>on</sub>        |     | **  |       | ns    |
| Reverse Recovery Time                                                              | $u_{IS}/d_t = 100$                                                                                                                      | t <sub>rr</sub>     |                        | 450 |     | ns    |       |

\* Pulse Test: Pulse Width  $\leq$  300µs, Duty Cycle  $\leq$  2%

\*\* Negligible, Dominated by circuit inductance

 $\Phi$