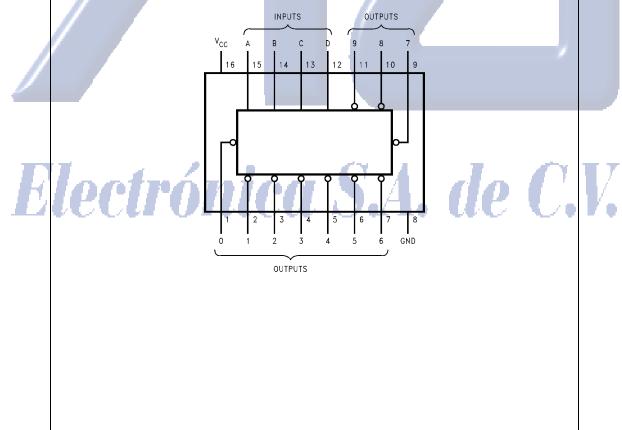
August 1986 Revised February 2000

# DM7442A BCD to Decimal Decoder

#### **General Description**

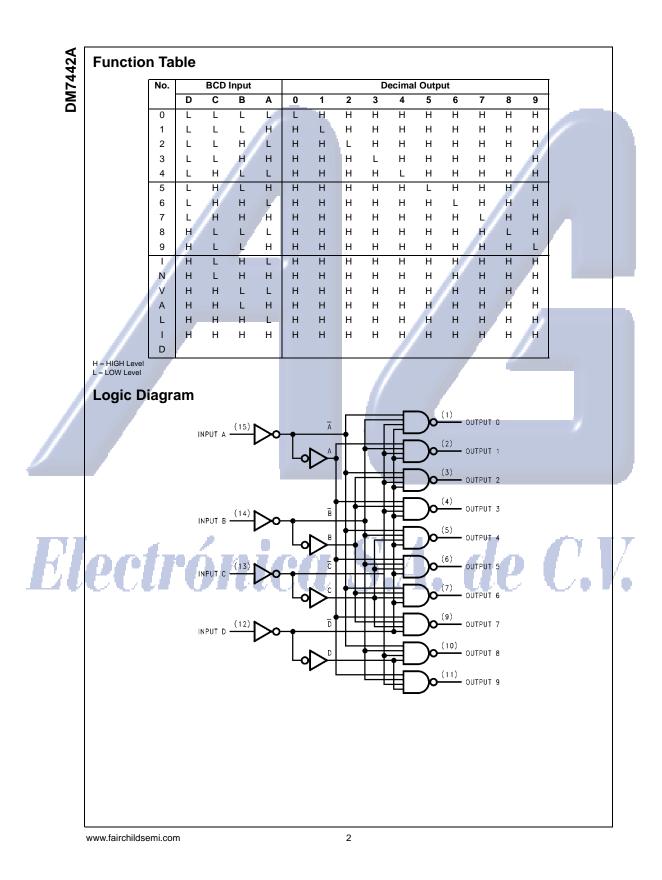
These BCD-to-decimal decoders consist of eight inverters and ten, four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of input logic ensures that all outputs remain off for all invalid (10–15) input conditions.


#### **Features**

- Diode clamped inputs
- Also for application as 4-line-to-16-line decoders;3-line-to-8-line decoders
- All outputs are high for invalid input conditions
- Typical power dissipation 140 mW
- Typical propagation delay 17 ns

# **Ordering Code:**

| Order Number | Package Number |                             | Package Description                         |  |
|--------------|----------------|-----------------------------|---------------------------------------------|--|
| DM7442AN     | N16E           | 16-Lead Plastic Dual-In-Lir | ne Package (PDIP), JEDEC MS-001, 0.300 Wide |  |


# **Connection Diagram**



© 2000 Fairchild Semiconductor Corporation

DS006516

www.fairchildsemi.com



www.agelectronica.com

### Absolute Maximum Ratings(Note 1)

Supply Voltage 7V 5.5V Input Voltage Operating Free Air Temperature Range 0°C to +70°C

-65°C to +150°C Storage Temperature Range

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## **Recommended Operating Conditions**

| Symbol          | Parameter                      | Min  |   | Nom | Max  | 1 | Units |
|-----------------|--------------------------------|------|---|-----|------|---|-------|
| V <sub>CC</sub> | Supply Voltage                 | 4.75 | j | 5   | 5.25 |   | V     |
| V <sub>IH</sub> | HIGH Level Input Voltage       | 2    |   |     | - // |   | V     |
| V <sub>IL</sub> | LOW Level Input Voltage        |      |   |     | 0.8  |   | V     |
| Гон             | HIGH Level Output Current      |      |   |     | -0.8 |   | mA    |
| I <sub>OL</sub> | LOW Level Output Current       |      |   |     | 16   |   | mA    |
| T <sub>A</sub>  | Free Air Operating Temperature | 0    |   |     | 70   |   | °C    |

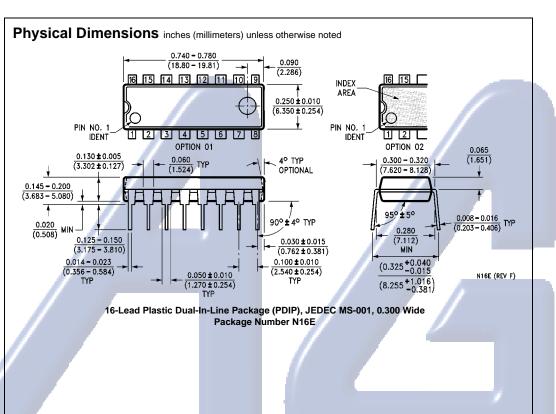
#### **Electrical Characteristics**

over recommended operating free air temperature range (unless otherwise noted)

| Symbol          | Parameter                         | Conditions                                   | Min | Typ<br>(Note 2) | Max  | Units |
|-----------------|-----------------------------------|----------------------------------------------|-----|-----------------|------|-------|
| VI              | Input Clamp Voltage               | $V_{CC} = Min, I_I = -12 \text{ mA}$         |     |                 | -1.5 | V     |
| V <sub>OH</sub> | HIGH Level                        | V <sub>CC</sub> = Min, I <sub>OH</sub> = Max | 2.4 | 3.4             |      | V     |
| //              | Output Voltage                    | V <sub>IL</sub> = Max, V <sub>IH</sub> = Min |     |                 |      |       |
| V <sub>OL</sub> | LOW Level                         | V <sub>CC</sub> = Min, I <sub>OL</sub> = Max |     | 0.2             | 0.4  | V     |
|                 | Output Voltage                    | V <sub>IH</sub> = Min, V <sub>IL</sub> = Max |     |                 |      |       |
| I <sub>1</sub>  | Input Current @ Max Input Voltage | $V_{CC} = Max, V_I = 5.5V$                   |     |                 | 1    | mA    |
| I <sub>IH</sub> | HIGH Level Input Current          | $V_{CC} = Max, V_I = 2.4V$                   |     |                 | 40   | μΑ    |
| I <sub>IL</sub> | LOW Level Input Current           | $V_{CC} = Max, V_I = 0.4V$                   |     |                 | -1.6 | mA    |
| Ios             | Short Circuit Output Current      | V <sub>CC</sub> = Max (Note 3)               | -18 |                 | -55  | mA    |
| I <sub>CC</sub> | Supply Current                    | V <sub>CC</sub> = Max (Note 4)               |     | 28              | 56   | mA    |

Note 2: All typicals are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

Note 3: Not more than one output should be shorted at a time.


Note 4:  $\ensuremath{\text{I}_{\text{CC}}}$  is measured with all outputs open and all inputs grounded.

# Switching Characteristics at V<sub>CC</sub> = 5V and T<sub>A</sub> = 25°C

| Symbol           | Parameter                 | Conditions             | Min | Max | Units |
|------------------|---------------------------|------------------------|-----|-----|-------|
| t <sub>PHL</sub> | Propagation Delay Time    | C <sub>L</sub> = 15 pF |     |     |       |
|                  | HIGH-to-LOW Level Output  | $R_L = 400\Omega$      |     | 25  | ns    |
|                  | from A, B, C or D through |                        |     | 25  | ris   |
|                  | 2 Levels of Logic         |                        |     |     |       |
| t <sub>PHL</sub> | Propagation Delay Time    |                        |     |     |       |
|                  | HIGH-to-LOW Level Output  |                        |     | 30  |       |
|                  | from A, B, C or D through |                        |     | 30  | ns    |
|                  | 3 Levels of Logic         |                        |     |     |       |
| t <sub>PLH</sub> | Propagation Delay Time    |                        |     |     |       |
|                  | LOW-to-HIGH Level Output  |                        |     | 25  |       |
|                  | from A, B, C or D through |                        |     | 25  | ns    |
|                  | 2 Levels of Logic         |                        |     |     |       |
| t <sub>PLH</sub> | Propagation Delay Time    |                        |     |     |       |
|                  | LOW-to-HIGH Level Output  |                        |     | 30  |       |
|                  | from A, B, C or D through |                        |     | 30  | ns    |
|                  | 3 Levels of Logic         |                        |     |     |       |

www.fairchildsemi.com

DM7442A BCD to Decimal Decoder



# Electrónica S.A. de C.V.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

www.fairchildsemi.com

4