NXP Semiconductors

Data Sheet: Advance Information

S32K1xx Data Sheet

Notes

- Technical information for S32K118 device is preliminary, until this device achieves qualification.
- Following two are the available attachments with Datasheet:
 - S32K1xx_Orderable_Part_Number_ List.xlsx
 - S32K1xx_Power_Modes_Configuration.xlsx

Key Features

- · Operating characteristics
 - Voltage range: 2.7 V to 5.5 V
 - Ambient temperature range: -40 °C to 105 °C for HSRUN mode, -40 °C to 125 °C for RUN mode
- ArmTM Cortex-M4F/M0+ core, 32-bit CPU
 - Supports up to 112 MHz frequency (HSRUN mode) with 1.25 Dhrystone MIPS per MHz
 - Arm Core based on the Armv7 Architecture and Thumb®-2 ISA
 - Integrated Digital Signal Processor (DSP)
 - Configurable Nested Vectored Interrupt Controller (NVIC)
 - Single Precision Floating Point Unit (FPU)
- · Clock interfaces
 - 4 40 MHz fast external oscillator (SOSC)
 - 48 MHz Fast Internal RC oscillator (FIRC)
 - 8 MHz Slow Internal RC oscillator (SIRC)
 - 128 kHz Low Power Oscillator (LPO)
 - Up to 112 MHz (HSRUN) System Phased Lock Loop (SPLL)
 - Up to 50 MHz DC external square wave input clock
 - Real Time Counter (RTC)

S32K1XX

- Power management
 - Low-power Arm Cortex-M4F/M0+ core with excellent energy efficiency
 - Power Management Controller (PMC) with multiple power modes: HSRUN, RUN, STOP, VLPR, and VLPS. Note: CSEc (Security) or EEPROM writes/ erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 Mhz) to execute CSEc (Security) or EEPROM writes/erase.
 - Clock gating and low power operation supported on specific peripherals.
- · Memory and memory interfaces
 - Up to 2 MB program flash memory with ECC
 - 64 KB FlexNVM for data flash memory with ECC and EEPROM emulation. Note: CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.
 - Up to 256 KB SRAM with ECC
 - Up to 4 KB of FlexRAM for use as SRAM or EEPROM emulation
 - Up to 4 KB Code cache to minimize performance impact of memory access latencies
 - QuadSPI with HyperBusTM support
- Mixed-signal analog
 - Up to two 12-bit Analog-to-Digital Converter (ADC) with up to 32 channel analog inputs per module
 - One Analog Comparator (CMP) with internal 8-bit Digital to Analog Converter (DAC)
- · Debug functionality
 - Serial Wire JTAG Debug Port (SWJ-DP) combines
 - Debug Watchpoint and Trace (DWT)
 - Instrumentation Trace Macrocell (ITM)
 - Test Port Interface Unit (TPIU)
 - Flash Patch and Breakpoint (FPB) Unit
- Human-machine interface (HMI)
 - Up to 156 GPIO pins with interrupt functionality
 - Non-Maskable Interrupt (NMI)

This document contains information on a pre-production product. Specifications and pre-production information herein are subject to change without notice.

· Communications interfaces

- Up to three Low Power Universal Asynchronous Receiver/Transmitter (LPUART/LIN) modules with DMA support and low power availability
- Up to three Low Power Serial Peripheral Interface (LPSPI) modules with DMA support and low power availability
- Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support and low power availability
- Up to three FlexCAN modules (with optional CAN-FD support)
- FlexIO module for emulation of communication protocols and peripherals (UART, I2C, SPI, I2S, LIN, PWM, etc).
- Up to one 10/100Mbps Ethernet with IEEE1588 support and two Synchronous Audio Interface (SAI) modules.

· Safety and Security

- Cryptographic Services Engine (CSEc) implements a comprehensive set of cryptographic functions as described in the SHE (Secure Hardware Extension) Functional Specification. Note: CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.
- 128-bit Unique Identification (ID) number
- Error-Correcting Code (ECC) on flash and SRAM memories
- System Memory Protection Unit (System MPU)
- Cyclic Redundancy Check (CRC) module
- Internal watchdog (WDOG)
- External Watchdog monitor (EWM) module

· Timing and control

- Up to eight independent 16-bit FlexTimers (FTM) modules, offering up to 64 standard channels (IC/OC/PWM)
- One 16-bit Low Power Timer (LPTMR) with flexible wake up control
- Two Programmable Delay Blocks (PDB) with flexible trigger system
- One 32-bit Low Power Interrupt Timer (LPIT) with 4 channels
- 32-bit Real Time Counter (RTC)

Package

- 32-pin QFN, 48-pin LQFP, 64-pin LQFP, 100-pin LQFP, 100-pin MAPBGA, 144-pin LQFP, 176-pin LQFP package options
- 16 channel DMA with up to 63 request sources using DMAMUX

Table of Contents

1	Bloc	ck diagra	ım	. 4			6.2.5	SPLL elect	trical specifications	32
2	Feat	ure com	parison	. 5		6.3	Memory	y and memo	ory interfaces	32
3	Orde	ering inf	ormation	. 7			6.3.1	Flash mem	ory module (FTFC) electrical	
	3.1	Selectin	ng orderable part number	.7				specification	ons	32
	3.2	Orderin	ng information	. 8				6.3.1.1	Flash timing specifications —	
4	Gen	eral		.9					commands	32
	4.1	Absolu	te maximum ratings	.9				6.3.1.2	Reliability specifications	37
	4.2	Voltage	e and current operating requirements	.10			6.3.2	QuadSPI A	AC specifications	38
	4.3	Therma	al operating characteristics	.11		6.4	Analog	modules		42
	4.4	Power	and ground pins	. 12			6.4.1	ADC elect	rical specifications	42
	4.5	LVR, I	LVD and POR operating requirements	.14				6.4.1.1	12-bit ADC operating conditions	42
	4.6	Power	mode transition operating behaviors	15				6.4.1.2	12-bit ADC electrical characteristics	44
	4.7	Power	consumption	16			6.4.2	CMP with	8-bit DAC electrical specifications	46
	4.8	ESD ha	andling ratings	.21		6.5	Commu	nication mo	odules	50
	4.9	EMC ra	adiated emissions operating behaviors	. 21			6.5.1	LPUART (electrical specifications	50
5	I/O	paramete	ers	.22			6.5.2	LPSPI elec	etrical specifications	50
	5.1	AC ele	ctrical characteristics	. 22			6.5.3	LPI2C elec	etrical specifications	56
	5.2	Genera	1 AC specifications	. 22			6.5.4	FlexCAN	electical specifications	57
	5.3	DC ele	ctrical specifications at 3.3 V Range	. 23			6.5.5	SAI electri	cal specifications	57
	5.4	DC ele	ctrical specifications at 5.0 V Range	. 24			6.5.6	Ethernet A	C specifications	59
	5.5	AC ele	ctrical specifications at 3.3 V range	25			6.5.7	Clockout f	requency	62
	5.6	AC ele	ctrical specifications at 5 V range	25		6.6	Debug 1	modules		62
	5.7	Standar	rd input pin capacitance	. 26			6.6.1	SWD elect	rical specofications	62
	5.8	Device	clock specifications	. 26			6.6.2	Trace elect	rical specifications	64
6	Peri	pheral o	perating requirements and behaviors	. 27			6.6.3	JTAG elec	trical specifications	65
	6.1	System	modules	. 27	7	Ther	mal attri	butes		68
	6.2	Clock i	nterface modules	. 27		7.1	Descrip	tion		68
		6.2.1	External System Oscillator electrical specifications	.27		7.2	Therma	l characteris	stics	68
		6.2.2	External System Oscillator frequency specifications .	29		7.3	General	notes for sp	pecifications at maximum junction	
		6.2.3	System Clock Generation (SCG) specifications	.31			tempera	iture		73
			6.2.3.1 Fast internal RC Oscillator (FIRC)		8	Dime	ensions			74
			electrical specifications	. 31		8.1	Obtaini	ng package	dimensions	74
			6.2.3.2 Slow internal RC oscillator (SIRC)		9	Pino	uts			75
			electrical specifications	.31		9.1	Package	e pinouts an	d signal descriptions	75
		6.2.4	Low Power Oscillator (LPO) electrical specifications		10	Revi	sion His	tory		75
				22						

1 Block diagram

Following figures show superset high level architecture block diagrams of S32K14x series and S32K11x series respectively. Other devices within the family have a subset of the features. See Feature comparison for chip specific values.

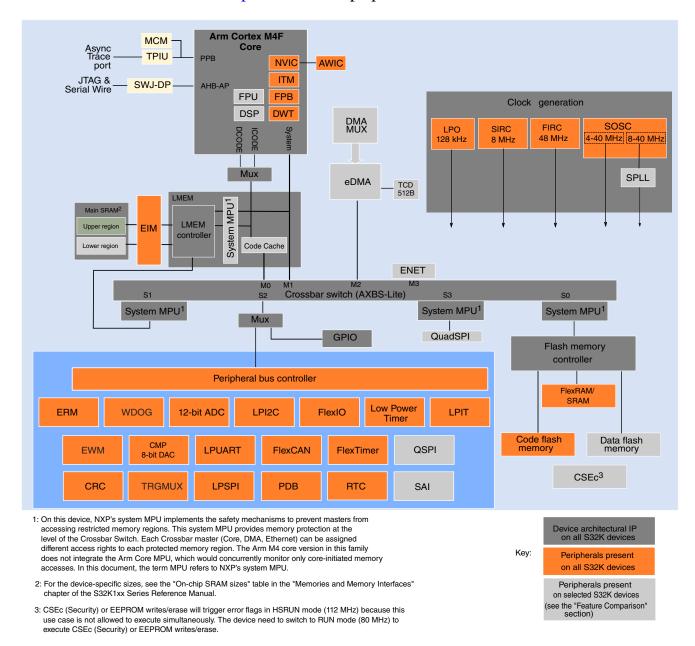


Figure 1. High-level architecture diagram for the S32K14x family

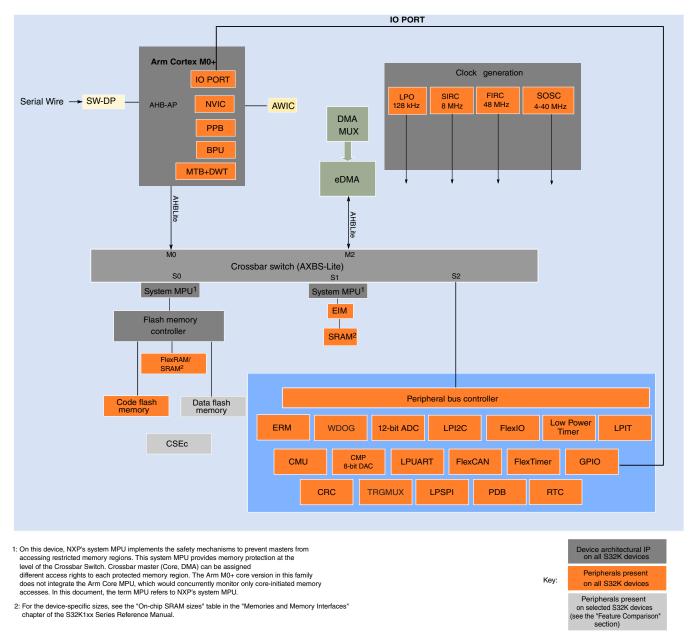


Figure 2. High-level architecture diagram for the S32K11x family

2 Feature comparison

The following figure summarizes the memory, peripherals and packaging options for the S32K1xx devices. All devices which share a common package are pin-to-pin compatible.

NOTE

Availability of peripherals depends on the pin availability in a particular package. For more information see *IO Signal*

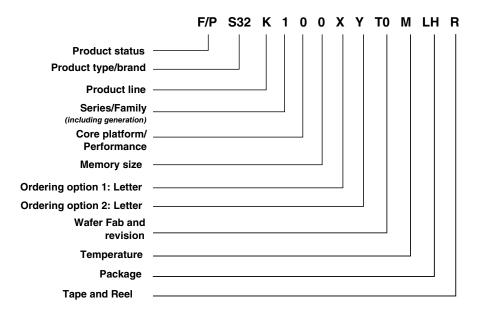
Feature comparison

Description Input Multiplexing sheet(s) attached with Reference Manual.

		S32K11x			S32I	K14x		
	Parameter	K116	K118	K142	K144	K146	K148	
	Core	Arn	n [®] Cortex™-M0+		Arn	n [®] Cortex™-M4F	•	
	Frequency	48 N		80 M⊢	Iz (RUN mode) or 1		mode)1	
	IEEE-754 FPU	()			•		
	Cryptographic Services Engine (CSEc) ¹	•		•				
	CRC module	1	x	1x				
	ISO 26262	capable up	to ASIL-B		capable up	to ASIL-B		
	Peripheral speed	up to 4	8 MHz		up to 112 MHz (HSRUN)			
	Crossbar	•	•	•				
Ε	DMA	•)			•		
System	External Watchdog Monitor (EWM)	(•	•		
(S)	Memory Protection Unit (MPU)	•			•			
	FIRC CMU		•		(0		
	Watchdog	1	x		1	х		
	Low power modes	•)		•	•		
	HSRUN mode ¹	()		•	•		
	Number of I/Os	up to 43	up to 58	up	to 89	up to 128	up to 156	
	Single supply voltage	2.7 -	5.5 V		2.7 -	5.5 V		
	Ambient Operation Temperature (Ta)	-40°C to +105	°C / +125°C		-40°C to +105	5°C / +125°C		
	Flash	128 KB	256 KB	256 KB	512 KB	1 MB	2 MB ²	
	Error Correcting Code (ECC)	•	•			•		
	System RAM (including FlexRAM and MTB)	17 KB	25 KB	32 KB	64 KB	128 KB	256 KB	
Š	FlexRAM (also available as system RAM)	2 KB			41	· · -		
Memory	Cache	C)		41	KB		
_	EEPROM emulated by FlexRAM ¹	2 KB (up to 32 KB D-Flash)		4 KI	B (up to 64 KB D-F	lash)	See footnote 3	
	External memory interface	0			0			
	Low Power Interrupt Timer (LPIT)	1	x	1x		х	HyperBus™	
_	FlexTimer (16-bit counter) 8 channels	2x (16)	4x (32) 6x (48)		6x (48)	8x (64)	
Timer	Low Power Timer (LPTMR)	1	x	1x			•	
-	Real Time Counter (RTC)	1	x		1	х		
	Programmable Delay Block (PDB)	1	x		2	2x		
b	Trigger mux (TRGMUX)	1x (43)	1x (45)	1x	(64)	1x (73)	1x (81)	
Analog	12-bit SAR ADC (1 Msps each)	1x (13)	1x (16)	2x	(16)	2x (24)	2x (32)	
٧	Comparator with 8-bit DAC	1	x		1	х		
	10/100 Mbps IEEE-1588 Ethernet MAC	(0		1x	
Ē	Serial Audio Interface (AC97, TDM, I2S)	(0		2x	
Communication	Low Power UART/LIN (LPUART) (Supports LIN protocol versions 1.3, 2.0, 2.1, 2.2A, and SAE J2602)	2	x	2x		3x		
Ē	Low Power SPI (LPSPI)	1x	2x	2x		3x		
E S	Low Power I2C (LPI2C)	1			1x		2x	
0	FlexCAN (CAN-FD ISO/CD 11898-1)	1 (1x wi		2x (1x with FD)	3x (1x with FD)	3x (2x with FD)	3x (3x with FD)	
	FlexIO (8 pins configurable as UART, SPI, I2C, I2S)	1	•	(12 11111 2)	1x	(2x mai : 2)	(ex marr 2)	
IDEs	Debug & trace	SWD, MTB (SWD, JTAG (ITM, SWV, SWO) (ITM		SWD, JTAG (ITM, SWV, SWO), ETM		
	Ecosystem (IDE, compiler, debugger)	NXP S32 Design St IAR, GHS, Arm®, La		NXP S32 Design Studio (GCC) + SDK, IAR, GHS, Arm®, Lauterbach, iSystems				
Other	Packages ⁵	32-pin QFN 48-pin LQFP	48-pin LQFP 64-pin LQFP	64-pin LQFP 100-pin LQFP	64-pin LQFP 100-pin LQFP 100-pin MAPBGA	64-pin LQFP 100-pin MAPBGA 100-pin LQFP 144-pin LQFP	100-pin MAPBGA 144-pin LQFP 176-pin LQFP	
	I ECEND:							

- Not implemented
- Available on the device

 No write or erase access to Flash module, including Security (CSEc) and EEPROM commands, are allowed when device is running at HSRUN mode (112MHz) or VLPR mode.
- 2 Available when EEEPROM, CSEc and Data Flash are not used. Else only up to 1,984 KB is available for Program Flash.
- 3 4 KB (up to 512 KB D-Flash as a part of 2 MB Flash). Up to 64 KB of flash is used as EEPROM backup and the remaining 448 KB of the last 512 KB block can be used as Data flash or Program flash. See chapter FTFC for details.
- 4 Only for Boundary Scan Register5 See Dimensions section for package drawings


Figure 3. S32K1xx product series comparison

3 Ordering information

3.1 Selecting orderable part number

Not all part number combinations are available. See the attachment $S32K1xx_Orderable_Part_Number_List.xlsx$ attached with the Datasheet for a list of standard orderable part numbers.

Ordering information 3.2

Product status

P: Prototype F: Qualified

Product type/brand

S32: Automotive 32-bit MCU

Product line

K: Arm Cortex MCUs

Series/Family

- 1: 1st product series 2: 2nd product series
- Core platform/Performance
- 1: Arm Cortex M0+
- 4: Arm Cortex M4F

Memory size

	2	4	6	8
S32K11x			128K	256K
S32K14x	256K	512K	1M	2M

Ordering option

X: Speed

B: 48 MHz without DMA (S32K11x only) L: 48 MHz with DMA (S32K11x only)

U1: 112 MHz (Not valid with M temperature/125C)

Y: Optional feature

R: Base feature set

F: CAN FD, FlexIO

A1: CAN FD, FlexIO, Security E: Ethernet, Serial Audio Interface (S32K148 only)

J1: Ethernet, Serial Audio Interface, CAN FD,

FlexIO, Security (S32K148 only)

Wafer, Fab and revision

Fx: ATMC2 Tx: GF XX: Flex #2

x0: 1st revision

Temperature

V: -40C to 105C M: -40C to 125C W: -40C to 150C2

Package

_					
	Pins	LQFP	QFN	BGA	
	32	-	FM	-	
	48	LF	•	-	
	64	H	-	-	
	100	LL	,	МН	
	144	LQ		-	
	176	LU	-	,	

Tape and Reel

T: Trays/Tubes R: Tape and Reel

- 1. CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.
- 2. Not supported yet
- 3. Part numbers no longer offered as standard include: Ordering Option X (M:64MHz); Ordering Option Y (N: limited RAM. 16KB for K142, 48KB for K144, 96KB for K146, 192KB for K148
 - S: Security); Temperature (C: -40C to 85C)

NOTE

Not all part number combinations are available. See S32K1xx_Orderable_Part_Number_List.xlsx attached with the Datasheet for list of standard orderable parts.

Figure 4. Ordering information

4 General

4.1 Absolute maximum ratings

NOTE

- Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in the following table for specific conditions.
- Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device.
- All the limits defined in the datasheet specification must be honored together and any violation to any one or more will not guarantee desired operation.
- Unless otherwise specified, all maximum and minimum values in the datasheet are across process, voltage, and temperature.

Symbol	Parameter	Conditions ¹	Min	Max	Unit
V _{DD} ²	2.7 V - 5. 5V input supply voltage	_	-0.3	5.8 ³	V
V_{REFH}	3.3 V / 5.0 V ADC high reference voltage	_	-0.3	5.8 ³	٧
I _{INJPAD_DC_ABS} ⁴	Continuous DC input current (positive / negative) that can be injected into an I/O pin	_	-3	+3	mA
V_{IN_DC}	Continuous DC Voltage on any I/O pin with respect to V _{SS}	_	-0.8	5.8 ⁵	V
I _{INJSUM_DC_ABS}	Sum of absolute value of injected currents on all the pins (Continuous DC limit)	_	_	30	mA
T _{ramp} ⁶	ECU supply ramp rate	_	0.5 V/min	500 V/ms	_
T _{ramp_MCU} ⁷	MCU supply ramp rate	_	0.5 V/min	100 V/ms	_
T _A ⁸	Ambient temperature	_	-40	125	°C
T _{STG}	Storage temperature	_	-55	165	°C
V _{IN_TRANSIENT}	Transient overshoot voltage allowed on I/O pin beyond V _{IN_DC limit}	_	_	6.8 ⁹	V

Table 1. Absolute maximum ratings

NXP Semiconductors 9

^{1.} All voltages are referred to V_{SS} unless otherwise specified.

^{2.} As V_{DD} varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.

^{3. 60} s lifetime - No restrictions i.e. The part can switch.

¹⁰ hours lifetime - Device in reset i.e. The part cannot switch.

General

- 4. When input pad voltage levels are close to V_{DD} or V_{SS}, practically no current injection is possible.
- 5. While respecting the maximum current injection limit
- 6. This is the Electronic Control Unit (ECU) supply ramp rate and not directly the MCU ramp rate. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.
- 7. This is the MCU supply ramp rate and the ramp rate assumes that the S32K1xx HW design guidelines in AN5426 are followed. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.
- 8. T_{.I} (Junction temperature)=135 °C. Assumes T_A=125 °C for RUN mode
 - T_{.I} (Junction temperature)=125 °C. Assumes TA=105 °C for HSRUN mode
 - Assumes maximum θJA for 2s2p board. See Thermal characteristics
- 9. 60 seconds lifetime; device in reset (no outputs enabled/toggling)

4.2 Voltage and current operating requirements

NOTE

Device functionality is guaranteed up to the LVR assert level, however electrical performance of 12-bit ADC, CMP with 8-bit DAC, IO electrical characteristics, and communication modules electrical characteristics would be degraded when voltage drops below 2.7 V

Table 2. Voltage and current operating requirements 1

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD} ²	Supply voltage	2.7 ³	5.5	V	4
V _{DD_OFF}	Voltage allowed to be developed on V _{DD} pin when it is not powered from any external power supply source.	0	0.1	V	
V_{DDA}	Analog supply voltage	2.7	5.5	V	4
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	- 0.1	0.1	V	4
V _{REFH}	ADC reference voltage high	2.7	V _{DDA} + 0.1	V	5
V _{REFL}	ADC reference voltage low	-0.1	0.1	V	
V _{ODPU}	Open drain pullup voltage level	V_{DD}	V _{DD}	V	6
I _{INJPAD_DC_OP} ⁷	Continuous DC input current (positive / negative) that can be injected into an I/O pin	-3	+3	mA	
I _{INJSUM_DC_OP}	Continuous total DC input current that can be injected across all I/O pins such that there's no degradation in accuracy of analog modules: ADC and ACMP (See section Analog Modules)	_	30	mA	

- Typical conditions assumes V_{DD} = V_{DDA} = V_{REFH} = 5 V, temperature = 25 °C and typical silicon process unless otherwise stated.
- 2. As V_{DD} varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.
- 3. S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes.
- 4. V_{DD} and V_{DDA} must be shorted to a common source on PCB. The differential voltage between V_{DD} and V_{DDA} is for RF-AC only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC.

- 5. V_{REFH} should always be equal to or less than V_{DDA} + 0.1 V and V_{DD} + 0.1 V
- 6. Open drain outputs must be pulled to V_{DD} .
- 7. When input pad voltage levels are close to V_{DD} or V_{SS} , practically no current injection is possible.

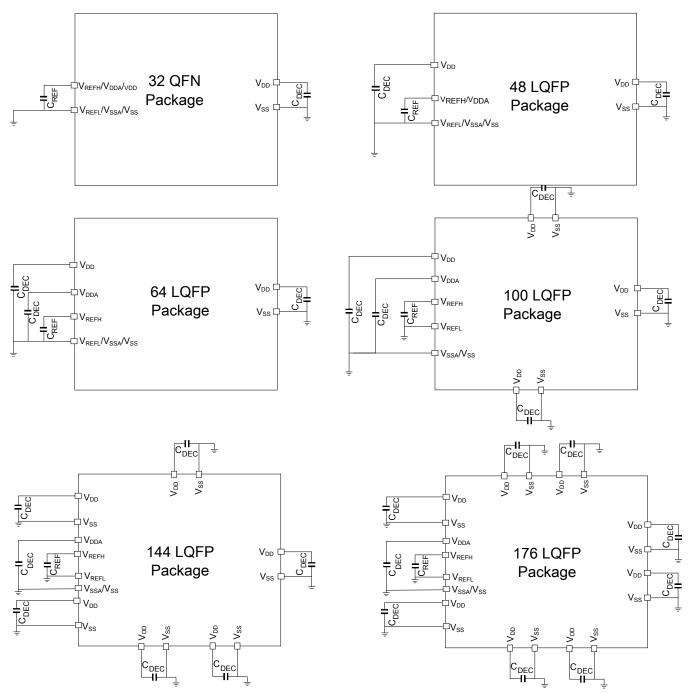

4.3 Thermal operating characteristics

Table 3. Thermal operating characteristics for 64 LQFP, 100 LQFP, and 100 MAP-BGA packages.

Symbol	Parameter		Unit		
		Min.	Тур.	Max.	
T _{A C-Grade Part}	Ambient temperature under bias	-40	_	85 ¹	°C
T _{J C-Grade Part}	Junction temperature under bias	-40	_	105 ¹	°C
T _{A V-Grade Part}	Ambient temperature under bias	-40	_	105 ¹	°C
T _{J V-Grade Part}	Junction temperature under bias	-40	_	125 ¹	°C
T _{A M-Grade Part}	Ambient temperature under bias	-40	_	125 ²	°C
T _{J M-Grade Part}	Junction temperature under bias	-40	_	135 ²	°C

- 1. Values mentioned are measured at ≤ 112 MHz in HSRUN mode.
- 2. Values mentioned are measured at ≤ 80 MHz in RUN mode.

4.4 Power and ground pins

NOTE: V_{DD} and V_{DDA} must be shorted to a common source on PCB

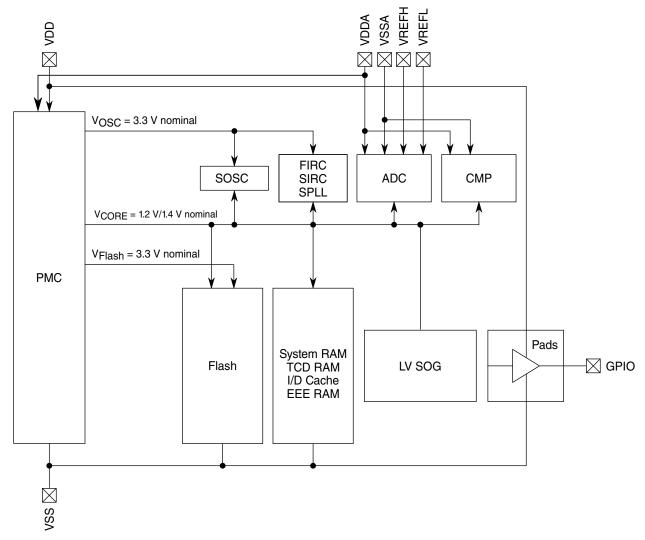

Figure 5. Pinout decoupling

Table 4. Supplies decoupling capacitors 1, 2

Symbol	Description	Min. ³	Тур.	Max.	Unit
C _{REF} , 4, 5	ADC reference high decoupling capacitance	70	100	_	nF
C _{DEC} ⁵ , ⁶ , ⁷	Recommended decoupling capacitance	70	100	_	nF

- V_{DD} and V_{DDA} must be shorted to a common source on PCB. The differential voltage between V_{DD} and V_{DDA} is for RF-AC only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC. All V_{SS} pins should be connected to common ground at the PCB level.
- 2. All decoupling capacitors must be low ESR ceramic capacitors (for example X7R type).
- 3. Minimum recommendation is after considering component aging and tolerance.
- 4. For improved performance, it is recommended to use 10 μ F, 0.1 μ F and 1 nF capacitors in parallel.
- 5. All decoupling capacitors should be placed as close as possible to the corresponding supply and ground pins.
- 6. Contact your local Field Applications Engineer for details on best analog routing practices.
- 7. The filtering used for decoupling the device supplies must comply with the following best practices rules:
 - The protection/decoupling capacitors must be on the path of the trace connected to that component.
 - No trace exceeding 1 mm from the protection to the trace or to the ground.
 - The protection/decoupling capacitors must be as close as possible to the input pin of the device (maximum 2 mm).
 - The ground of the protection is connected as short as possible to the ground plane under the integrated circuit.

General

*Note: VSSA and VSS are shorted at package level

Figure 6. Power diagram

4.5 LVR, LVD and POR operating requirements

Table 5. V_{DD} supply LVR, LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Rising and falling V _{DD} POR detect voltage	1.1	1.6	2.0	V	
V _{LVR}	LVR falling threshold (RUN, HSRUN, and STOP modes)	2.50	2.58	2.7	V	
V _{LVR_HYST}	LVR hysteresis	_	45	_	mV	1
V_{LVR_LP}	LVR falling threshold (VLPS/VLPR modes)	1.97	2.22	2.44	V	
V _{LVD}	Falling low-voltage detect threshold	2.8	2.875	3	V	
V _{LVD_HYST}	LVD hysteresis	_	50	_	mV	1

Table 5. V_{DD} supply LVR, LVD and POR operating requirements (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{LVW}	Falling low-voltage warning threshold	4.19	4.305	4.5	V	
V _{LVW_HYST}	LVW hysteresis	_	75	_	mV	1
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	

1. Rising threshold is the sum of falling threshold and hysteresis voltage.

4.6 Power mode transition operating behaviors

All specifications in the following table assume this clock configuration:

- RUN Mode:
 - Clock source: FIRC
 - SYS CLK/CORE CLK = 48 MHz
 - BUS CLK = 48 MHz
 - FLASH_CLK = 24 MHz
- HSRUN Mode:
 - Clock source: SPLL
 - SYS CLK/CORE CLK = 112 MHz
 - BUS CLK = 56 MHz
 - FLASH CLK = 28 MHz
- VLPR Mode:
 - Clock source: SIRC
 - SYS_CLK/CORE_CLK = 4 MHz
 - BUS CLK = 4 MHz
 - FLASH CLK = 1 MHz
- STOP1/STOP2 Mode:
 - Clock source: FIRC
 - SYS_CLK/CORE_CLK = 48 MHz
 - BUS_CLK = 48 MHz
 - FLASH CLK = 24 MHz
- VLPS Mode: All clock sources disabled ¹

Table 6. Power mode transition operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
t _{POR}	After a POR event, amount of time from the point V _{DD} reaches 2.7 V to execution of the first instruction across the operating temperature range of the chip.	<u> </u>	325	_	μs

- 1. For S32K11x FIRC/SOSC
 - For S32K14x FIRC/SOSC/SPLL

Table 6. Power mode transition operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit
	VLPS → RUN	8	_	17	μs
	STOP1 → RUN	0.07	0.075	0.08	μs
	STOP2 → RUN	0.07	0.075	0.08	μs
	VLPR → RUN	19	_	26	μs
	VLPR → VLPS	5.1	5.7	6.5	μs
	VLPS → VLPR	18.8	23	27.75	μs
	RUN → Compute operation	0.72	0.75	0.77	μs
	HSRUN → Compute operation	0.3	0.31	0.35	μs
	RUN → STOP1	0.35	0.38	0.4	μs
	RUN → STOP2	0.2	0.23	0.25	μs
	RUN → VLPS	0.3	0.35	0.4	μs
	RUN → VLPR	3.5	3.8	5	μs
	VLPS → Asynchronous DMA Wakeup	105	110	125	μs
	STOP1 → Asynchronous DMA Wakeup	1	1.1	1.3	μs
	STOP2 → Asynchronous DMA Wakeup	1	1.1	1.3	μs
	Pin reset → Code execution	_	214	_	μs

NOTE

HSRUN should only be used when frequencies in excess of 80 MHz are required. When using 80 MHz and below, RUN mode is the recommended operating mode.

4.7 Power consumption

The following table shows the power consumption targets for the device in various mode of operations. Attached *S32K1xx_Power_Modes _Configuration.xlsx* details the modes used in gathering the power consumption data stated in the following table Table 7. For full functionality refer to table: Module operation in available power modes of the *Reference Manual*.

Table 7. Power consumption (Typicals unless stated otherwise) 1

		۵ (zHM/Aц) zHM/ddl	245	251	279	255	302	¥	325	TBD	TBD	TBD	ТВО	360	364	400	373	423	¥
	HSRUN@112 MHz (mA) ³	Peripherals enabled		<u> </u>	•	<u> </u>					•	<u> </u>		52.2	52.5	9229	53.1	57.4	Ø
	HSRUN@112 MHz (mA) ³	Peripherals disabled												40.5	41.1	44	41.5	44.9	N N
	RUN@80 MHz (mA)	Peripherals enabled	4							4				37.5	37.7	40	38	40.7	¥
	BUN®	Peripherals disabled	AN							¥				28.8	29.1	32	29.8	33.8	N A
	RUN@64 MHz (mA)	Peripherals enabled												31.3	31.6	33.5	31.9	35.3	NA
,	RUN@64 (mA)	Peripherals disabled												24.5	25	26.9	25.5	27.8	NA
	RUN@48 MHz (mA)	Peripherals enabled	20.3	20.6	22.1	20.8	23.1	Α	24.1	TBD	TBD	TBD	42	24.6	24.9	28.2	25.7	30.2	¥
	RUN MHz	Peripherals disabled	11.8	12	13.4	12.3	14.5	NA	15.6	TBD	TBD	TBD	TBD	17.3	17.6	22	18.3	23.1	NA
	STOP2 (mA)		7.2	7.5	8.9	7.7	10.1	ΑN	11.3	12	TBD	TBD	TBD	7.4	8	9.4	8.3	10.9	AN
	STOP1 (mA)		6.3	9.9	œ	6.8	9.2	NA	10.4	7	TBD	TBD	ТВО	6.4	7	9.8	9.7	6.6	NA
	a	Peripherals enabled use case 2 ⁷	TBD	TBD	ΑN	TBD	ΑΝ	TBD	A A	TBD	TBD	TBD	TBD	2.19	2.31	AN	2.44	ΑΝ	2.84
•	VLPR (mA)	Peripherals enabled use case 16	1.07	1.11	1.4	1.16	1.69	AN	2.04	2.5	TBD	TBD	ТВD	1.21	1.51	1.89	1.61	2.34	¥
-	IV	Peripherals disabled ⁶	1.05	1.1	1.39	1.15	1.68	ΑN	2.02	1.9	TBD	TBD	TBD	1.17	1.48	1.87	1.58	2.32	A A
	μΑ) ²	Peripherals enabled	40	93	300	164	603	A A	904	38	TBD	TBD	TBD	40	137	098	257	791	NA
	VLPS (µA) ²	Peripherals disabled ⁵	26	92	287	139	290	N A	891	26	TBD	TBD	TBD	29	128	335	240	740	A A
			Тур	Тур	Мах	Тур	Мах	Тур	Мах	Typ	Тур	Мах	Мах	Тур	Тур	Max	Тур	Мах	Тур
		(O°) ərutsrəqməT tnəidmA	25	85	1	105		125		25	105	1	125	25	85		105	1	125
		epiveUhihD	S32K116							S32K118			1	S32K142					

Table continues on the next page...

Table 7. Power consumption (Typicals unless stated otherwise) 1 (continued)

	۵ (sHM/Aų) sHM/ddl	450	378	381	435	390	445	A A	484	452	465	530	477	287	A A	099	526	543
HSRUN@112 MHz (mA) ³	Peripherals enabled	⋖	55.6	56.1	59.7	57.1	61.3	⋖	4	68.3	8.69	78	70.8	82.8	⋖	4	83.3	88.7
HSRUN@1 MHz (mA)	Peripherals disabled	AN	43.3	43.9	46.3	44.8	47.9	Z	NA	52	53.3	60.3	54.4	65.7	Z	NA	60.3	62.9
30 MHz A)	Peripherals enabled	43.8	39.6	40	42.1	40.5	43.5	¥	46.8	47.6	48.7	54.4	49.6	58.8	Ą	64.8	57.7	59.9
RUN@80 MHz (mA)	Peripherals disabled	36	30.2	30.5	34.8	31.2	35.6	¥	38.7	36.2	37.2	42.4	38.1	46.9	¥	52.8	42.1	43.4
RUN@64 MHz (mA)	Peripherals enabled	38.8	33.3	33.5	36.2	33.8	37.3	¥.	40.3	40.2	41.3	47	42.2	51.4	AN	57.4	45.3	46.6
RUN@64 (mA)	Peripherals disabled	30.7	25.1	26.1	29.3	26.6	30.3	¥	35	30.5	31.5	36.7	32.5	41.3	¥	47.3	35.5	36.8
RUN@48 MHz (mA)	Peripherals enabled	32.9	26.9	27.1	29.6	27.4	30.6	¥	33.6	31.4	32.4	37.9	33.4	42.6	¥	48.8	34.9	37.0
RUN MHz	Peripherals disabled	52	19.7	20.4	23.2	20.6	23.9	ž	26.9	23.4	24.4	29.3	25.3	34.1	ž	40.2	27.6	29.1
STOP2 (mA)		13.7	7.7	8.1	6.6	8.5	1.1	A A	13.8	9.2	10.1	13.9	=	18.3	N A	23.7	9.6	11.1
STOP1 (mA)		12.7	7	7.2	9.2	7.8	10.3	ΑZ	12.9	8	8.9	12.7	9.8	17.1	ΑN	22.6	8.5	10.1
(a)	Peripherals enabled use case 27	AN	2.91	3.08	ž	3.23	ž	3.65	Ϋ́	3.3	3.54	Ϋ́	3.78	ž	4.44	ΑN	3.45	3.74
VLPR (mA)	Peripherals enabled use case 1 ⁶	3.21	1.50	1.85	2.65	2.10	2.70	¥	3.25	1.61	1.83	3.38	2.04	4.13	¥.	5.38	2.20	2.35
>	Peripherals disabled ⁶	3.1	1.48	1.72	2.60	1.80	2.65	ž	3.18	1.57	1.79	3.32	1.99	4.06	ž	5.28	2.17	2.30
(µA) ²	Peripherals enabled	1694	42	159	384	273	006	Ϋ́	1998	47	209	981	422	2017	Ϋ́	3380	54	357
VLPS (µA) ²	Peripherals disabled ⁵	1637	29.8	150	359	256	850	¥ ¥	1960	37	207	974	419	2004	¥ ¥	3358	38	336
		Мах	Тур	Тур	Max	Тур	Max	Тур	Max	Тур	Тур	Max	Тур	Max	Тур	Мах	Тур	Тур
	(O°) ərutsrəqməT tnəidmA		25	85		105		125		25	85		105		125		22	85
	⊖oiv∋D\qid⊃		S32K144							S32K146							S32K148 ⁸	

Table continues on the next page...

Power consumption (Typicals unless stated otherwise) 1 (continued) Table 7.

	4	609	565	645	A	719
2	^ (sHM\Aų) sHM\ddl				_	
HSRUN@112 MHz (mA) ³	Peripherals enabled	96.1	89.1	97.4	¥	A A
HSRUN@112 MHz (mA) ³	Peripherals disabled	70.4	63.8	73.6	Z	Z
RUN@80 MHz (mA)	Peripherals enabled	65.1	61.5	8.99	¥	71.6
BUN®	Peripherals disabled	48.7	45.2	51.6	Ϋ́	57.5
RUN@64 MHz (mA)	Peripherals enabled	53.9	47.5	55.3	¥	61.3
RUN®	Peripherals disabled	41.9	37.6	44.9	ΑΝ	50.9
RUN@48 MHz (mA)	Peripherals enabled	43.6	37.8	46.8	A A	52.5
RUN	Peripherals disabled	34.8	29.8	38.4	ΝA	44.3
STOP2 (mA)		15.6	11.9	19.0	A A	24.5
STOP1 (mA)		14.5	10.9	18.0	ΑN	23.4
a	Peripherals enabled use case 27	ΑŽ	4.03	ΑŽ	4.85	ΑŽ
LPR (mA)	Peripherals enabled use case 1 ⁶	3.55	2.54	4.47	NA	80.9
>	Peripherals disabled ⁶	3.48	2.49	4.40	A	00.9
µA) 2	Peripherals enabled	1736	577	2970	A A	4166
VLPS (μA) ²	Peripherals disabled ⁵	1660	260	2945	Y Y	3990
		Max	Тур	Max	Тур	Мах
	(O°) ərutsrəqməT fnəidmA		105		125	
	Chip/Device					

 $V_{\rm DD} = V_{\rm DDA} = V_{\rm REFH} = 5$ V, temperature = 25 °C and typical silicon process unless otherwise stated. All output pins are floating and On-chip pulldown is enabled for Typical current numbers are indicative for typical silicon process and may vary based on the silicon distribution and user configuration. Typical conditions assumes all unused input pins.

Current numbers are for reduced configuration and may vary based on user configuration and silicon process variation. oi ω 4:

HSRUN mode must not be used at 125°C. Max ambient temperature for HSRUN mode is 105°C.

Values mentioned for S32K14x devices are measured at RUN®80 MHz with peripherals disabled and values mentioned for S32K11x devices are measured at RUN @48 MHz with peripherals disabled.

With PMC_REGSC[CLKBIASDIS] set to 1. See Reference Manual for details.

Data collected using RAM 8 7.5

Numbers on limited samples size and data collected with Flash

The S32K148 data points assume that ENET/QuadSPI/SAI etc. are inactive.

Table 8. VLPS additional use-case power consumption at typical conditions

Unit		μĄ	ηЧ	ηЧ	μĄ	Рη	Рη	μĄ	ηЧ	РИ	μĄ	РИ	Рη	μĄ	Рη	Рη	Рη	Рη	ηЧ	Рη	Рη	mA	mA	mA	mA	μĄ	ηЧ	РИ	ηЧ
	S32K148	40	240	490	1250	250	490	850	1960	110	350	009	1280	006	1370	2060	3690	280	510	810	1540	4.11	4.93	5.74	7.38	130	320	570	1280
	S32K146	30	180	350	810	250	410	009	1250	110	280	480	1000	820	1220	1660	2860	270	410	610	1170	3.75	4.35	4.93	5.97	120	260	440	910
ice	S32K144	30	170	330	089	230	400	550	1070	100	240	400	280	069	096	1250	1980	250	340	430	760	3.19	3.7	4.2	4.63	100	250	410	750
Device	S32K142	30	110	230	570	230	320	490	890	100	170	260	530	029	880	1080	1970	250	340	430	740	2.99	3.26	3.5	3.93	100	190	310	640
	S32K118	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
	S32K116	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
Temp.		25	85	105	125	25	85	105	125	25	82	105	125	25	85	105	125	25	85	105	125	25	85	105	125	25	85	105	125
Description		Clock source: LPO or RTC_CLKIN				Clock source: SIRC	Transmiting or receiving continuously Insign DMA	Baudrate: 19.2 kbps		Clock source: SIRC	 Wake-up address feature enabled Bandrate: 19.2 kbns 			Clock Source: SIRC	Transmit/receive using DMA Baudrate: 100 kHz	בממכומוכי - כס או זב		Clock source: SIRC	Wake-up address feature enabled Randrate: 100 kH2			Clock source: SIRC	Transmit/receive using DMA Bandrate: 500 kHz	בממקומוני. כספי או זב		Clock source: SIRC	1 channel enable Mode: 32-hit periodic counter		
Use-case		VLPS and RTC				VLPS and LPUART	TX/XT			VLPS and LPUART	wake-up			VLPS and LPI2C	master			VLPS and LPI2C	slave wake-up			VLPS and LPSPI	master			VLPS and LPIT			

The following table shows the power consumption targets for S32K148 in various mode of operations measure at 3.3 V.

Table 9. Power consumption at 3.3 V

Chip/Device	Ambient		RUN@80	MHz (mA)	HSRUN@11	2 MHz (mA) ¹
	Temperature (°C)		Peripherals enabled + QSPI	Peripherals enabled + ENET + SAI	Peripherals enabled + QSPI	Peripherals enabled + ENET + SAI
S32K148	25	Тур	67.3	79.1	89.8	105.5
	85	Тур	67.4	79.2	95.6	105.9
		Max	82.5	88.2	109.7	117.4
	105	Тур	68.0	79.8	96.6	106.7
		Max	80.3	89.1	109.0	119.0
	125	Max	83.5	94.7	N	A

^{1.} HSRUN mode must not be used at 125°C. Max ambient temperature for HSRUN mode is 105°C.

4.8 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	- 4000	4000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model				2
	All pins except the corner pins	- 500	500	V	
	Corner pins only	- 750	750	V	
I _{LAT}	Latch-up current at ambient temperature of 125 °C	- 100	100	mA	3

Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).

4.9 EMC radiated emissions operating behaviors

EMC measurements to IC-level IEC standards are available from NXP on request.

^{2.} Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

^{3.} Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

5 I/O parameters

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

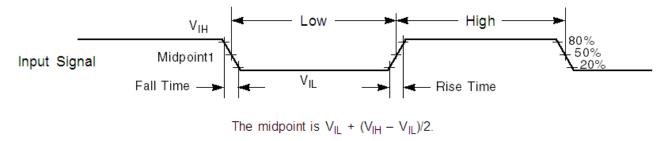


Figure 7. Input signal measurement reference

5.2 General AC specifications

These general purpose specifications apply to all signals configured for GPIO, UART, and timers.

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1, 2
	GPIO pin interrupt pulse width (digital glitch filter disabled, passive filter disabled) — Asynchronous path	50	_	ns	3
WFRST	RESET input filtered pulse	_	10	ns	4
WNFRST	RESET input not filtered pulse	Maximum of (100 ns, bus clock period)		ns	5

Table 10. General switching specifications

- This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop and VLPS modes, the synchronizer is bypassed so shorter pulses can be recognized in that case
- 2. The greater of synchronous and asynchronous timing must be met.
- 3. These pins do not have a passive filter on the inputs. This is the shortest pulse width that is guaranteed to be recognized.
- 4. Maximum length of RESET pulse which will be filtered by internal filter.
- 5. Minimum length of RESET pulse, guaranteed not to be filtered by the internal filter. This number depends on bus clock period also. For example, in VLPR mode bus clock is 4 MHz, which make clock period of 250 ns. In this case, minimum pulse width which will cause reset is 250 ns. For faster bus clock frequencies which have clock period less than 100 ns, the minimum pulse width not filtered will be 100 ns.

5.3 DC electrical specifications at 3.3 V Range

NOTE

For details on the pad types defined in Table 11 and Table 12, see Reference Manual section *IO Signal Table* and IO Signal Description Input Multiplexing sheet(s) attached with Reference Manual.

Table 11. DC electrical specifications at 3.3 V Range

Symbol	Parameter		Value		Unit	Notes
		Min.	Тур.	Max.		
V _{DD}	I/O Supply Voltage	2.7	3.3	4	٧	1
V _{ih}	Input Buffer High Voltage	$0.7 \times V_{DD}$	_	V _{DD} + 0.3	V	2
V _{il}	Input Buffer Low Voltage	V _{SS} – 0.3	_	$0.3 \times V_{DD}$	V	3
V _{hys}	Input Buffer Hysteresis	$0.06 \times V_{DD}$	_	_	V	
Ioh _{GPIO}	I/O current source capability measured when	3.5	_	_	mA	
Ioh _{GPIO-HD_DSE_0}	$pad V_{oh} = (V_{DD} - 0.8 V)$					
Iol _{GPIO}	I/O current sink capability measured when	3	_	_	mA	
Iol _{GPIO-HD_DSE_0}	$pad V_{ol} = 0.8 V$					
loh _{GPIO-HD_DSE_1}	I/O current source capability measured when pad $V_{oh} = (V_{DD} - 0.8 \text{ V})$	14	_	_	mA	4
Iol _{GPIO-HD_DSE_1}	I/O current sink capability measured when pad $V_{ol} = 0.8 \text{ V}$	12	_	_	mA	4
loh _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad V _{oh} =V _{DD} -0.8 V	9.5	_	_	mA	5
Iol _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad $V_{ol} = 0.8 \text{ V}$	10	_	_	mA	5
loh _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad V _{oh} =V _{DD} -0.8 V	16	_	_	mA	5
Iol _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad $V_{ol} = 0.8 \text{ V}$	15.5	_	_	mA	5
IOHT	Output high current total for all ports	_	_	100	mA	
IIN	Input leakage current (per pin) for full tempera	ture range at	$V_{DD} = 3.3 V$		•	6
	All pins other than high drive port pins		0.005	0.5	μA	
	High drive port pins ⁷		0.010	0.5	μA	
R _{PU}	Internal pullup resistors	20		60	kΩ	8
R _{PD}	Internal pulldown resistors	20		60	kΩ	9

^{1.} S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes.

NXP Semiconductors 23

^{2.} For reset pads, same V_{ih} levels are applicable

^{3.} For reset pads, same V_{il} levels are applicable

^{4.} The value given is measured at high drive strength mode. For value at low drive strength mode see the loh_Standard value given above.

^{5.} For refernce only. Run simulations with the IBIS model and custom board for accurate results.

I/O parameters

- Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details see IO Signal Description Input Multiplexing sheet(s) attached with the Reference Manual.
- 7. When using ENET and SAI on S32K148, the overall device limits associated with high drive pin configurations must be respected i.e. On 144-pin LQFP the general purpose pins: PTA10, PTD0, and PTE4 must be set to low drive.
- 8. Measured at input $V = V_{SS}$
- 9. Measured at input V = V_{DD}

5.4 DC electrical specifications at 5.0 V Range

Table 12. DC electrical specifications at 5.0 V Range

Symbol	Parameter			Unit	Notes	
		Min.	Тур.	Max.		
V_{DD}	I/O Supply Voltage	4	_	5.5	V	
V _{ih}	Input Buffer High Voltage	0.65 x V _{DD}	_	V _{DD} + 0.3	V	1
V _{il}	Input Buffer Low Voltage	V _{SS} – 0.3	_	0.35 x V _{DD}	V	2
V_{hys}	Input Buffer Hysteresis	0.06 x V _{DD}	_	_	V	
loh _{GPIO} loh _{GPIO-HD_DSE_0}	I/O current source capability measured when pad V_{oh} = (V_{DD} - 0.8 V)	5	_	_	mA	
Iol _{GPIO-HD_DSE_0}	I/O current sink capability measured when pad V _{ol} = 0.8 V	5	_	_	mA	
loh _{GPIO-HD_DSE_1}	I/O current source capability measured when pad $V_{oh} = V_{DD}$ - 0.8 V	20	_	_	mA	3
Iol _{GPIO-HD_DSE_1}	I/O current sink capability measured when pad $V_{ol} = 0.8 \text{ V}$	20	_	_	mA	3
Ioh _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad $V_{oh} = V_{DD}$ - 0.8 V	14.0	_	_	mA	4
IoI _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad V _{ol} = 0.8 V	14.5	_	_	mA	4
Ioh _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad $V_{oh} = V_{DD}$ - 0.8 V	21	_	_	mA	4
Iol _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad V _{ol} = 0.8 V	20.5	_	_	mA	4
IOHT	Output high current total for all ports	_	_	100	mA	
IIN	Input leakage current (per pin) for full te	mperature r	ange at V _{DD}	= 5.5 V		5
	All pins other than high drive port pins		0.005	0.5	μΑ	
	High drive port pins		0.010	0.5	μΑ	
R _{PU}	Internal pullup resistors	20		50	kΩ	6
R _{PD}	Internal pulldown resistors	20		50	kΩ	7

- 1. For reset pads, same V_{ih} levels are applicable
- 2. For reset pads, same V_{il} levels are applicable
- 3. The strong pad I/O pin is capable of switching a 50 pF load up to 40 MHz.
- 4. For refernce only. Run simulations with the IBIS model and custom board for accurate results.

NXP Semiconductors

- 5. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details refer to SK3K144_IO_Signal_Description_Input_Multiplexing.xlsx attached with the Reference Manual.
- 6. Measured at input V = V_{SS}
- 7. Measured at input $V = V_{DD}$

5.5 AC electrical specifications at 3.3 V range

Table 13. AC electrical specifications at 3.3 V Range

Symbol	DSE	Rise tii	me (nS) ¹	Fall tim	ne (nS) ¹	Capacitance (pF) ²
		Min.	Max.	Min.	Max.	
tRF _{GPIO}	NA	3.2	14.5	3.4	15.7	25
		5.7	23.7	6.0	26.2	50
		20.0	80.0	20.8	88.4	200
tRF _{GPIO-HD}	0	3.2	14.5	3.4	15.7	25
		5.7	23.7	6.0	26.2	50
		20.0	80.0	20.8	88.4	200
	1	1.5	5.8	1.7	6.1	25
		2.4	8.0	2.6	8.3	50
		6.3	22.0	6.0	23.8	200
tRF _{GPIO-FAST}	0	0.6	2.8	0.5	2.8	25
		3.0	7.1	2.6	7.5	50
		12.0	27.0	10.3	26.8	200
	1	0.4	1.3	0.38	1.3	25
		1.5	3.8	1.4	3.9	50
		7.4	14.9	7.0	15.3	200

- 1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.
- 2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections.

5.6 AC electrical specifications at 5 V range

Table 14. AC electrical specifications at 5 V Range

Symbol	DSE	Rise tir	ne (nS) ¹	Fall time (nS) 1		Capacitance (pF) ²
		Min.	Max .	Min.	Max.	
tRF _{GPIO}	NA	2.8	9.4	2.9	10.7	25
		5.0	15.7	5.1	17.4	50
		17.3	54.8	17.6	59.7	200
tRF _{GPIO-HD}	0	2.8	9.4	2.9	10.7	25
		5.0	15.7	5.1	17.4	50

Table continues on the next page...

Table 14. AC electrical specifications at 5 V Range (continued)

Symbol	DSE	Rise tii	me (nS) ¹	Fall tim	ne (nS) ¹	Capacitance (pF) ²
		Min.	Max .	Min.	Max.	
		17.3	54.8	17.6	59.7	200
	1	1.1	4.6	1.1	5.0	25
		2.0	5.7	2.0	5.8	50
		5.4	16.0	5.0	16.0	200
tRF _{GPIO-FAST}	0	0.42	2.2	0.37	2.2	25
		2.0	5.0	1.9	5.2	50
		9.3	18.8	8.5	19.3	200
	1	0.37	0.9	0.35	0.9	25
		1.2	2.7	1.2	2.9	50
		6.0	11.8	6.0	12.3	200

^{1.} For reference only. Run simulations with the IBIS model and your custom board for accurate results.

5.7 Standard input pin capacitance

Table 15. Standard input pin capacitance

Symbol	Description	Min.	Max.	Unit
C_{IN_D}	Input capacitance: digital pins	_	7	pF

NOTE

Please refer to External System Oscillator electrical specifications for EXTAL/XTAL pins.

5.8 Device clock specifications

Table 16. Device clock specifications 1

Symbol	Description	Min.	Max.	Unit
	High Speed run mode ²			
f _{SYS}	System and core clock	_	112	MHz
f _{BUS}	Bus clock	_	56	MHz
f _{FLASH}	Flash clock	_	28	MHz
	Normal run mode (S32K11x series)		•
f _{SYS}	System and core clock	_	48	MHz
f _{BUS}	Bus clock	_	48	MHz

^{2.} Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections.

Table 16. Device clock specifications 1 (continued)

Symbol	Description	Min.	Max.	Unit
f _{FLASH}	Flash clock	_	24	MHz
	Normal run mode (S32K14x series)	3		
f _{SYS}	System and core clock	_	80	MHz
f _{BUS}	Bus clock	_	40 ⁴	MHz
f _{FLASH}	Flash clock	_	26.67	MHz
	VLPR mode ⁵			
f _{SYS}	System and core clock	_	4	MHz
f _{BUS}	Bus clock	_	4	MHz
f _{FLASH}	Flash clock	_	1	MHz
f _{ERCLK}	External reference clock	_	16	MHz

- 1. Refer to the section Feature comparison for the availability of modes and other specifications.
- 2. Only available on some devices. See section Feature comparison.
- 3. With SPLL as system clock source.
- 4. 48 MHz when f_{SYS} is 48 MHz
- 5. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

6 Peripheral operating requirements and behaviors

6.1 System modules

There are no electrical specifications necessary for the device's system modules.

6.2 Clock interface modules

6.2.1 External System Oscillator electrical specifications

S32K1xx Data Sheet, Rev. 8, 06/2018

NXP Semiconductors 27

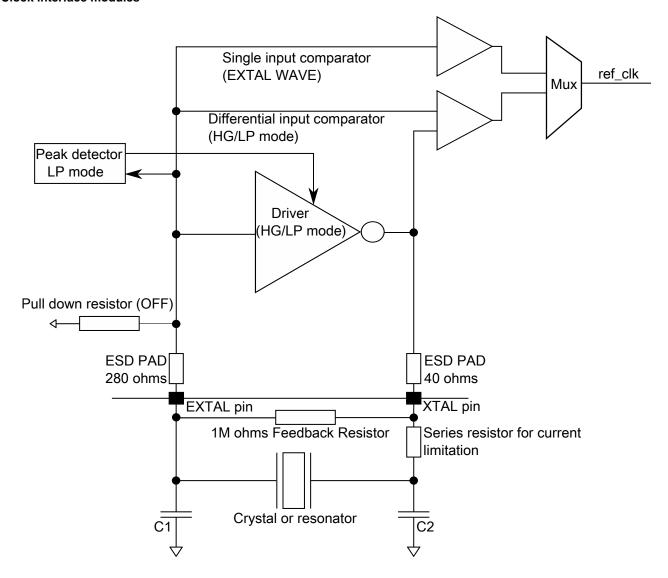


Figure 8. Oscillator connections scheme

Table 17. External System Oscillator electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
g _m xosc	Crystal oscillator transconductance					
	SCG_SOSCCFG[RANGE]=2'b10 for 4-8 MHz	2.2	_	13.7	mA/V	
	SCG_SOSCCFG[RANGE]=2'b11 for 8-40 MHz	16	_	47	mA/V	
V _{IL}	Input low voltage — EXTAL pin in external clock mode	V _{SS}	_	1.15	V	
V _{IH}	Input high voltage — EXTAL pin in external clock mode	0.7 * V _{DD}	_	V _{DD}	V	
C ₁	EXTAL load capacitance	_	_	_		1
C ₂	XTAL load capacitance	_	_	_		1
R _F	Feedback resistor			•		2
	Low-gain mode (HGO=0)	_	_	_	ΜΩ	

Table continues on the next page...

Table 17. External System Oscillator electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	High-gain mode (HGO=1)	_	1	_	ΜΩ	
R _S	Series resistor					
	Low-gain mode (HGO=0)	_	0	_	kΩ	
	High-gain mode (HGO=1)	_	0	_	kΩ	
V _{pp}	Peak-to-peak amplitude of oscillation (oscillator mode)					3
	Low-gain mode (HGO=0)	_	1.0	_	V	
	High-gain mode (HGO=1)	_	3.3	_	V	

1. Crystal oscillator circuit provides stable oscillations when $g_{mXOSC} > 5 * gm_crit$. The gm_crit is defined as:

gm_crit =
$$4 * ESR * (2\pi F)^2 * (C_0 + C_1)^2$$

where:

- g_{mXOSC} is the transconductance of the internal oscillator circuit
- ESR is the equivalent series resistance of the external crystal
- F is the external crystal oscillation frequency
- C₀ is the shunt capacitance of the external crystal
- C_L is the external crystal total load capacitance. $C_L = C_s + [C_1 * C_2 / (C_1 + C_2)]$
- C_s is stray or parasitic capacitance on the pin due to any PCB traces
- C₁, C₂ external load capacitances on EXTAL and XTAL pins

See manufacture datasheet for external crystal component values

- 2. When low-gain is selected, internal R_F will be selected and external R_F should not be attached.
 - When high-gain is selected, external R_F (1 M Ohm) needs to be connected for proper operation of the crystal. For external resistor, up to 5% tolerance is allowed.
- The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

6.2.2 External System Oscillator frequency specifications

Table 18. External System Oscillator frequency specifications

Symbol	Symbol Description	Min.	-	Ţ	Typ.	W	Мах.	Unit	Notes
		S32K14x	S32K14x S32K11x		S32K14x S32K11x	S32K14x	S32K14x S32K11x		
fosc_hi	Oscillator crystal or resonator frequency	4			ı	40	0	MHz	
fec_extal	Input clock frequency (external clock mode)				1	50	48	MHz	-
tdc_extal	Input clock duty cycle (external clock mode)	48	8	50	0	2	52	%	-
tcst	Crystal Start-up Time								
	8 MHz low-gain mode (HGO=0)	I	-	1.5	5	I	-	sw	2
	8 MHz high-gain mode (HGO=1)	1	-	2.	2.5	1	1		
	40 MHz low-gain mode (HGO=0)		-	2		1	1		
	40 MHz high-gain mode (HGO=1)		-	2	-		-		

Frequencies below 40 MHz can be used for degraded duty cycle upto 40-60%
 Proper PC board layout procedures must be followed to achieve specifications.

6.2.3 System Clock Generation (SCG) specifications

6.2.3.1 Fast internal RC Oscillator (FIRC) electrical specifications Table 19. Fast internal RC Oscillator electrical specifications

Symbol	Parameter ¹		Value		Unit
		Min.	Тур.	Max.]
F _{FIRC}	FIRC target frequency	_	48	_	MHz
ΔF	Frequency deviation across process, voltage, and temperature < 105°C	_	±0.5	±1	%F _{FIRC}
ΔF125	Frequency deviation across process, voltage, and temperature < 125°C	_	±0.5	±1.1	%F _{FIRC}
T _{Startup}	Startup time		3.4	5	μs²
T _{JIT} , 3	Cycle-to-Cycle jitter	_	300	500	ps
T _{JIT} ³	Long term jitter over 1000 cycles	_	0.04	0.1	%F _{FIRC}

- 1. With FIRC regulator enable
- 2. Startup time is defined as the time between clock enablement and clock availability for system use.
- 3. FIRC as system clock

NOTE

Fast internal RC Oscillator is compliant with CAN and LIN standards.

6.2.3.2 Slow internal RC oscillator (SIRC) electrical specifications Table 20. Slow internal RC oscillator (SIRC) electrical specifications

Symbol	Parameter		Value		Unit
		Min.	Тур.	Max.	
F _{SIRC}	SIRC target frequency	_	8	_	MHz
ΔF	Frequency deviation across process, voltage, and temperature < 105°C	_	_	±3	%F _{SIRC}
ΔF125	Frequency deviation across process, voltage, and temperature < 125°C	_	_	±3.3	%F _{SIRC}
T _{Startup}	Startup time	_	9	12.5	μs ¹

1. Startup time is defined as the time between clock enablement and clock availability for system use.

6.2.4 Low Power Oscillator (LPO) electrical specifications Table 21. Low Power Oscillator (LPO) electrical specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{LPO}	Internal low power oscillator frequency	113	128	139	kHz
T _{startup}	Startup Time	_	_	20	μs

6.2.5 SPLL electrical specifications

Table 22. SPLL electrical specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{SPLL_REF} ¹	PLL Reference Frequency Range	8	_	16	MHz
F _{SPLL_Input} ²	PLL Input Frequency	8	_	40	MHz
F _{VCO_CLK}	VCO output frequency	180	_	320	MHz
F _{SPLL_CLK}	PLL output frequency	90	_	160	MHz
J _{CYC_SPLL}	PLL Period Jitter (RMS) ³		•		
	at F _{VCO_CLK} 180 MHz	_	120	_	ps
	at F _{VCO_CLK} 320 MHz	_	75	_	ps
J _{ACC_SPLL}	PLL accumulated jitter over 1µs (RMS) ³		•		
	at F _{VCO_CLK} 180 MHz	_	1350	_	ps
	at F _{VCO_CLK} 320 MHz	_	600	_	ps
D _{UNL}	Lock exit frequency tolerance	± 4.47	_	± 5.97	%
T _{SPLL_LOCK}	Lock detector detection time ⁴	_	_	150 × 10 ⁻⁶ + 1075(1/F _{SPLL_REF})	S

^{1.} F_{SPLL_REF} is PLL reference frequency range after the PREDIV. For PREDIV and MULT settings refer SCG_SPLLCFG register of Reference Manual.

6.3 Memory and memory interfaces

6.3.1 Flash memory module (FTFC) electrical specifications

This section describes the electrical characteristics of the flash memory module.

^{2.} F_{SPLL_Input} is PLL input frequency range before the PREDIV must be limited to the range 8 MHz to 40 MHz. This input source could be derived from a crystal oscillator or some other external square wave clock source using OSC bypass mode. For external clock source settings refer SCG_SOSCCFG register of Reference Manual.

^{3.} This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary

^{4.} Lock detector detection time is defined as the time between PLL enablement and clock availability for system use.

6.3.1.1 Flash timing specifications — commands Table 23. Flash command timing specifications for S32K14x

Symbol	Descrip	tion ¹	S32	K142	S3	2K144	S32	K146	S32	2K148		
			Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit	Notes
t _{rd1blk}	Read 1 Block	32 KB flash	_	_	_	_	_	_	_	_	ms	
	execution time	64 KB flash	_	0.5	_	0.5	_	0.5	_	<u> </u>		
		128 KB flash	_	_	_	_	_	_	_	1—		
		256 KB flash	_	2	_	_	_	_	_	<u> </u>		
		512 KB flash	_	_	_	1.8	_	2	_	2	1	
t _{rd1sec}	Read 1 Section	2 KB flash	_	75	_	75	_	75	_	75	μs	
	execution time	4 KB flash	_	100	_	100	_	100	_	100		
t _{pgmchk}	Program Check execution time	_	_	95	_	95	_	95	_	100	μs	
t _{pgm8}	Program Phrase execution time	_	90	225	90	225	90	225	90	225	μs	
t _{ersblk}	Erase Flash	32 KB flash	_	_	_	_	_	_	_	<u> </u>	ms	2
	Block execution time	64 KB flash	30	550	30	550	30	550	_	<u> </u>		
	unie	128 KB flash	_	_	_	_	_	_	_	<u> </u>		
		256 KB flash	250	2125	_	_	_	_	_	<u> </u>		
		512 KB flash	_	_	250	4250	250	4250	250	4250		
t _{ersscr}	Erase Flash Sector execution time	_	12	130	12	130	12	130	12	130	ms	2
t _{pgmsec1k}	Program Section execution time (1KB flash)	_	5	_	5	_	5	_	5	_	ms	
t _{rd1all}	Read 1s All Block execution time	_	_	2.8	_	2.3	_	5.2	_	8.2	ms	
t _{rdonce}	Read Once execution time	_	_	30	_	30	_	30	_	30	μs	
t _{pgmonce}	Program Once execution time	_	90	_	90	_	90	_	90	_	μs	
t _{ersall}	Erase All Blocks execution time	_	250	2800	400	4900	700	10000	1400	17000	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	_	35	_	35	_	35	_	35	μs	
t _{ersallu}	Erase All Blocks Unsecure execution time	_	250	2800	400	4900	700	10000	1400	17000	ms	2
t _{pgmpart}	Program Partition for EEPROM	32 KB EEPROM backup	70	_	70	_	70	_	_	_	ms	3
	execution time	64 KB EEPROM backup	71		71	_	71		150			

Memory and memory interfaces

Table 23. Flash command timing specifications for S32K14x (continued)

Symbol	Descrip	tion ¹	S32	K142	S3	2K144	S32	K146	S32	2K148		
			Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit	Notes
t _{setram}	Set FlexRAM Function	Control Code 0xFF	0.08	_	0.08	_	0.08		0.08	_	ms	3
	execution time	32 KB EEPROM backup	0.8	1.2	0.8	1.2	0.8	1.2	_	_		
		48 KB EEPROM backup	1	1.5	1	1.5	1	1.5	_	_		
		64 KB EEPROM backup	1.3	1.9	1.3	1.9	1.3	1.9	1.3	1.9		
t _{eewr8b}	Byte write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	385	1700	_	_	μs	3,4
		48 KB EEPROM backup	430	1850	430	1850	430	1850	_	_		
		64 KB EEPROM backup	475	2000	475	2000	475	2000	475	4000		
t _{eewr16b}	16-bit write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	385	1700	_	_	μs	3,4
		48 KB EEPROM backup	430	1850	430	1850	430	1850	_	_		
		64 KB EEPROM backup	475	2000	475	2000	475	2000	475	4000		
t _{eewr32bers}	32-bit write to erased FlexRAM location execution time	_	360	2000	360	2000	360	2000	360	2000	μs	
t _{eewr32b}	32-bit write to FlexRAM execution time	32 KB EEPROM backup	630	2000	630	2000	630	2000	_	_	μs	3,4
		48 KB EEPROM backup	720	2125	720	2125	720	2125	_	_		
		64 KB EEPROM backup	810	2250	810	2250	810	2250	810	4500		
t _{quickwr}	32-bit Quick Write execution	1st 32-bit write	200	550	200	550	200	550	200	1100	μs	4,5,6
	time: Time from CCIF clearing (start the write) until CCIF	2nd through Next to Last (Nth-1) 32- bit write	150	550	150	550	150	550	150	550		

35

Table 23. Flash command timing specifications for S32K14x (continued)

Symbol	Description ¹		S32K142		S32K144		S32K146		S32K148			
			Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit	Notes
	setting (32-bit write complete, ready for next 32-bit write)	Last (Nth) 32-bit write (time for write only, not cleanup)	200	550	200	550	200	550	200	550		
tquickwrClnup	Quick Write Cleanup execution time	_	_	(# of Quick Writes) * 2.0	_	(# of Quick Writes) * 2.0	_	(# of Quick Writes) * 2.0	_	(# of Quick Writes) * 2.0	ms	7

- 1. All command times assumes 25 MHz or greater flash clock frequency (for synchronization time between internal/external clocks).
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- For all EEPROM Emulation terms, the specified timing shown assumes previous record cleanup has occurred. This may
 be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 No EEPROM
 issues detected.
- 4. 1st time EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2× the times shown.
- 5. Only after the Nth write completes will any data be valid. Emulated EEPROM record scheme cleanup overhead may occur after this point even after a brownout or reset. If power on reset occurs before the Nth write completes, the last valid record set will still be valid and the new records will be discarded.
- 6. Quick Write times may take up to 550 μs, as additional cleanup may occur when crossing sector boundaries.
- 7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes, assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.

Table 24. Flash command timing specifications for S32K11x

Symbol	Descript	S32	2K116	S	32K118			
			Тур	Max	Тур	Max	Unit	Notes
t _{rd1blk}	Read 1 Block execution	32 KB flash	<u> </u>	0.36	_	0.36	ms	
	time	64 KB flash	_	_	_	_		
		128 KB flash	_	1.2	<u> </u>	_		
		256 KB flash	_	_	_	2		
		512 KB flash	_	_	_	_		
t _{rd1sec}	Read 1 Section execution time	2 KB flash	_	75	_	75	μs	
		4 KB flash	_	100	_	100		
t _{pgmchk}	Program Check execution time	_		100	_	100	μs	
t _{pgm8}	Program Phrase execution time	_	90	225	90	225	μs	
t _{ersblk}	Erase Flash Block execution time	32 KB flash	15	300	15	300	ms	2
		64 KB flash	_	_	_	_		
		128 KB flash	120	1100	_	_		
		256 KB flash	_	_	250	2125		
		512 KB flash	_	_	<u> </u>	_		

Memory and memory interfaces

Table 24. Flash command timing specifications for S32K11x (continued)

Symbol	Description	S3:	2K116	S	32K118			
			Тур	Max	Тур	Max 130	Unit ms	Notes 2
t _{ersscr}	Erase Flash Sector execution time	_	12	130	12			
t _{pgmsec1k}	Program Section execution time (1 KB flash)	_	5	_	5		ms	
t _{rd1all}	Read 1s All Block execution time		_	1.7	_	2.8	ms	
t _{rdonce}	Read Once execution time		_	30	_	30	μs	
t _{pgmonce}	Program Once execution time	_	90	_	90	_	μs	
t _{ersall}	Erase All Blocks execution time	_	150	1500	230	2500	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	_	35	_	35	μs	
t _{ersallu}	Erase All Blocks Unsecure execution time	_	150	1500	230	2500	ms	2
t _{pgmpart}	Program Partition for EEPROM execution time	32 KB EEPROM backup	71	_	71	_	ms	3
		64 KB EEPROM backup	_	_	_	_		
t _{setram}	Set FlexRAM Function execution time	Control Code 0xFF	0.08	_	0.08	_	ms	3
		32 KB EEPROM backup	0.8	1.2	0.8	1.2		
		48 KB EEPROM backup	_	_	_	_		
		64 KB EEPROM backup	_	_	_	_		
t _{eewr8b}	Byte write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	μs	3,4
		48 KB EEPROM backup	_	_	_	_		
		64 KB EEPROM backup	_	_	_	_		
t _{eewr16b}	16-bit write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	μs	3,4
		48 KB EEPROM backup	_	_	_	_		
		64 KB EEPROM backup	_	_	_	_		
t _{eewr32bers}	32-bit write to erased FlexRAM location execution time	_	360	2000	360	2000	μs	

Table 24. Flash command timing specifications for S32K11x (continued)

Symbol	Description	on ¹	S32	K116	S	32K118		
			Тур	Max	Тур	Max	Unit	Notes
t _{eewr32b}	32-bit write to FlexRAM execution time	32 KB EEPROM backup	630	2000	630	2000	μs	3,4
		48 KB EEPROM backup	_	_	_	_		
		64 KB EEPROM backup	_	_	_	_		
t _{quickwr}	32-bit Quick Write	1st 32-bit write	200	550	200	550	μs	4,5,6
	execution time: Time from CCIF clearing (start the write) until CCIF setting (32-bit write	2nd through Next to Last (Nth-1) 32-bit write	150	550	150	550		
	complete, ready for next 32-bit write)	Last (Nth) 32-bit write (time for write only, not cleanup)	200	550	200	550		
tquickwrClnup	Quick Write Cleanup execution time	_	_	(# of Quick Writes) * 2.0	_	(# of Quick Writes) * 2.0	ms	7

- 1. All command times assume 25 MHz or greater flash clock frequency (for synchronization time between internal/external clocks).
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- For all EEPROM Emulation terms, the specified timing shown assumes previous record cleanup has occurred. This may
 be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 No EEPROM
 issues detected.
- 4. 1st time EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2x the times shown.
- 5. Only after the Nth write completes will any data be valid. Emulated EEPROM record scheme cleanup overhead may occur after this point even after a brownout or reset. If power on reset occurs before the Nth write completes, the last valid record set will still be valid and the new records will be discarded.
- 6. Quick Write times may take up to 550 µs, as additional cleanup may occur when crossing sector boundaries.
- 7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes, assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.

NOTE

Under certain circumstances FlexMEM maximum times may be exceeded. In this case the user or application may wait, or assert reset to the FTFC macro to stop the operation.

6.3.1.2 Reliability specifications

Table 25. NVM reliability specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	When using as Program	and Data	Flash	-		
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	_	_	years	1
n _{nvmcycp}	Cycling endurance	1 K	_	_	cycles	2, 3

Table continues on the next page...

Memory and memory interfaces

Table 25. NVM reliability specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	When using FlexMemory feature : Fle	xRAM as E	mulated EEP	ROM		
t _{nvmretee}	Data retention	5	_	_	years	4
n _{nvmwree16}	Write endurance • EEPROM backup to FlexRAM ratio = 16	100 K	_	_	writes	5, 6, 7
n _{nvmwree256}	EEPROM backup to FlexRAM ratio = 256	1.6 M	_	_	writes	

- 1. Data retention period per block begins upon initial user factory programming or after each subsequent erase.
- 2. Program and Erase for PFlash and DFlash are supported across product temperature specification in Normal Mode (not supported in HSRUN mode).
- 3. Cycling endurance is per DFlash or PFlash Sector.
- 4. Data retention period per block begins upon initial user factory programming or after each subsequent erase. Background maintenance operations during normal FlexRAM usage extend effective data retention life beyond 5 years.
- 5. FlexMemory write endurance specified for 16-bit and/or 32-bit writes to FlexRAM and is supported across product temperature specification in Normal Mode (not supported in HSRUN mode). Greater write endurance may be achieved with larger ratios of EEPROM backup to FlexRAM.
- 6. For usage of any EEE driver other than the FlexMemory feature, the endurance spec will fall back to the specified endurance value of the D-Flash specification (1K).
- 7. FlexMemory calculator tool is available at NXP web site for help in estimation of the maximum write endurance achievable at specific EEPROM/FlexRAM ratios. The "In Spec" portions of the online calculator refer to the NVM reliability specifications section of data sheet. This calculator is only applies to the FlexMemory feature.

6.3.2 QuadSPI AC specifications

The following table describes the QuadSPI electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.
- Add 50 ohm series termination on board in QuadSPI SCK for Flash A to avoid loop back reflection when using in Internal DQS (PAD Loopback) mode.
- QuadSPI trace length should be 3 inches.
- For non-Quad mode of operation if external device doesn't have pull-up feature, external pull-up needs to be added at board level for non-used pads.
- With external pull-up, performance of the interface may degrade based on load associated with external pull-up.

Table 26. QuadSPI electrical specifications

				S	S																		
		5	DDR ³	External DQS	External DQS	Мах		-	_	ı	ı	0	0	_	0	0			30	0x01		204	1
	FLASH B	RUN/HSRUN ²	a	Exteri	Extern	Min													,	ô			50.04
	FLA	RUN/F	SDR	Internal Sampling	۲	Мах		0	0			-		0	0	0	-			00×0		20	-
			IS	Inte Sam	2	Min				·	•	•	•				•		•	ŏ		1	50.0
					Internal Loopback	Мах		0	_	0	0			0	0	0	30			0000		20	1
				Internal DQS	Loop	Min											ε			ŏ			1/ŧ2CK
)		HSRUN1	SDR	Interna	PAD Loopback	Мах		0								0	0			0000		80	1
		HSH	IS		P/ Loop	Min		O	_	_	-	•	•	0	-)		•	ŏ			1/ŧ2CK
				Internal Sampling	-	Max														00		40	1
	FLASH A			Internal Samplin	Ξ	Min	ings	0	0	'	'	•	•	0	0	0	•		•	ŏ	0x00 meters		1/ŧ2CK
					Internal Loopback	Мах	Register Settings	0		0	0	1		0	0	0	23			0000	Timing Parameters	48	1
				Internal DQS	Inte	Min	Regis		_			•	•				2			ŏ	Timing		1/ŧSCK
		RUN1	SDR	Interna	PAD Loopback	Мах		0		_		-		0	_	0	0		-	0000		64	-
		RL	S		P/ Loop	Min			_	_	_		•		_)		•	ŏ		-	1/ŧ2CK
				Internal Sampling	Ξ	Мах		0	0					0	0	0			ı	0000		38	ı
				Inte Sam	_	Min					-						,			ŏ			1/ŧ2CK
	Unit							ı	ı	ı	ı	ı	ı	ı		ı			ı	ı		MHz	ns
	Sym																				fsck	tsck	
	FLASH PORT		QuadSPI Mode					MCR[DDR_EN]	MCR[DQS_EN]	MCR[SCLKCFG[0]]	MCR[SCLKCFG[1]]	MCR[SCLKCFG[2]]	MCR[SCLKCFG[3]]	MCR[SCLKCFG[5]]	SMPR[FSPHS]	SMPR[FSDLY]	SOCCR	[SOCCFG[7:0]]	SOCCR[SOCCFG[15:8]]	FLSHCR[TDH]		SCK Clock Frequency	SCK Clock Period

Table continues on the next page...

Table 26. QuadSPI electrical specifications (continued)

						-							
		DDR ³	External DQS	External DQS	Мах	€8CK\S + 5'2		ı	10	-	ı	ı	25
FLASH B	RUN/HSRUN ²	סנ	Extern	Extern	Min	FSCK/S - 5'2	2	20	ı	5	10	2	2
FLA	RUN	SDR	Internal Sampling	Z	Мах	F2CK\S + 5'2			10	2	,		25
		S	Inte	_	Min	f2CK/S - 5.5	25	0	ı	1	10	22	N
				Internal Loopback	Max	fSCK/5 + 1.5			4	2	ı	ı	25
			Internal DQS	Lool	Min	f2CK/S - 1.5	6	-	ı	1	2	ည	CV.
	HSRUN1	SDR	Interna	PAD Loopback	Мах	18CK/S - 0.750	ı	ı	4	32	ı	ı	25
	HSH	IS		P/ Loop	Min	£SCK/S - 0.750	1.6	-			2	2	2
			Internal Sampling	Z	Мах	f2CK\5 + 1.5	ı		4	5	ı		25
FLASH A			Inte	2	Min	f8CK/5 - 1.5	14	0	ı	ı	2	2	2
FLA				Internal Loopback	Мах	f2CK\5 + 1.5		٠	4.5	2	,		25
			Internal DQS	Lool	Min	fSCK/2 - 1.5	10	-	ı	1	2	ည	C)
	RUN1	SDR	Intern	PAD Loopback	Мах	f2CK\S + 1.5			4.5	2	,		25
	2	S		Loop	Min	1.5 t - 1.5	2.5	-	ı	,	2	2	C)
			Internal Sampling	Ξ	Мах	f2CK\5 + 1.5	ı	ı	4.5	2	ı	ı	25
			Inte		Min	f2CK\S - 1.5	15	0	ı	,	2	2	
Unit						Su	us	us	SU	ns	SU	SU	þţ
Sym						tspc	tls	τţ	tov	tıv	tcssck	tsckcs	
FLASH PORT		QuadSPI Mode				SCK Duty Cycle	Data Input Setup Time	Data Input Hold Time	Data Output Valid Time	Data Output In-Valid Time	CS to SCK Time ⁶	SCK to CS Time 7	Output Load

See Reference Manual for details on mode settings See Reference Manual for details on mode settings

Valid for HyperRAM only

RWDS(External DQS CLK) frequency

For operating frequency ≤ 64 Mhz,Output invalid time is 5 ns. Program register value QuadSPI_FLSHCR[TCSS] = 4 h2 Program register value QuadSPI_FLSHCR[TCSH] = 4 h1 t- 0. 6. 4. 6. 6. γ.

Memory and memory interfaces

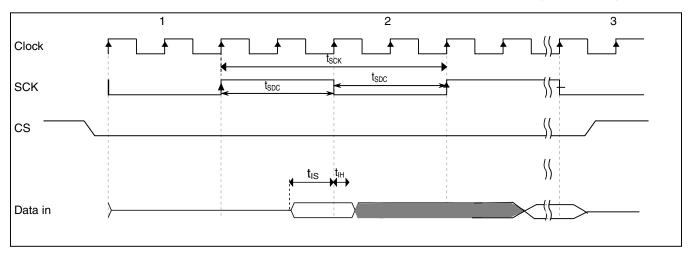


Figure 9. QuadSPI input timing (SDR mode) diagram

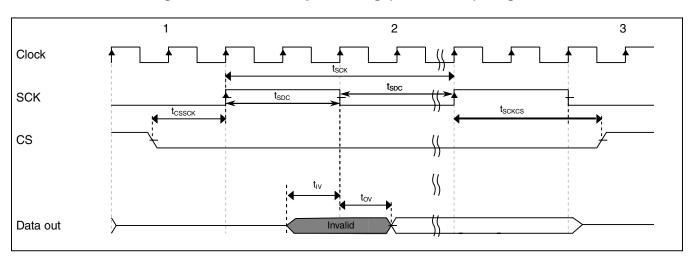
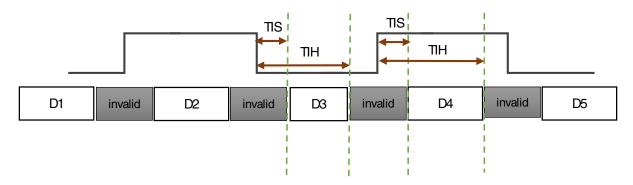



Figure 10. QuadSPI output timing (SDR mode) diagram

TIS-Setup Time TIH-Hold Time

Figure 11. QuadSPI input timing (HyperRAM mode) diagram

Analog modules

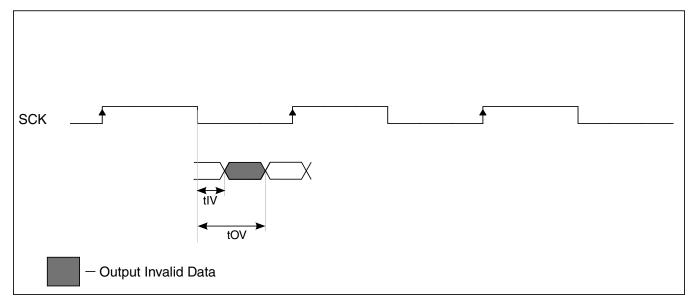


Figure 12. QuadSPI output timing (HyperRAM mode) diagram

6.4 Analog modules

6.4.1 ADC electrical specifications

6.4.1.1 12-bit ADC operating conditions Table 27. 12-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{REFH}	ADC reference voltage high		See Voltage and current operating requirements for values	$V_{ m DDA}$	See Voltage and current operating requirements for values	V	2
V _{REFL}	ADC reference voltage low		See Voltage and current operating requirements for values	0	See Voltage and current operating requirements for values	mV	2
V _{ADIN}	Input voltage		V _{REFL}	_	V_{REFH}	V	
R _S	Source impedendance	f _{ADCK} < 4 MHz	_	_	5	kΩ	
R _{SW1}	Channel Selection Switch Impedance		_	0.75	1.2	kΩ	
R _{AD}	Sampling Switch Impedance		_	2	5	kΩ	
C _{P1}	Pin Capacitance		_	10	_	pF	
C _{P2}	Analog Bus Capacitance		_	_	4	pF	
Cs	Sampling capacitance		_	4	5	pF	

Table continues on the next page...

NXP Semiconductors

Table 27. 12-bit ADC operating conditions (continued)

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
f _{ADCK}	ADC conversion clock frequency	Normal usage	2	40	50	MHz	3, 4
f _{CONV}	ADC conversion frequency	No ADC hardware averaging. ⁵ Continuous conversions enabled, subsequent conversion time	46.4	928	1160	Ksps	6, 7
		ADC hardware averaging set to 32. ⁵ Continuous conversions enabled, subsequent conversion time	1.45	29	36.25	Ksps	6, 7

- 1. Typical values assume $V_{DDA} = 5 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 40 \text{ MHz}$, $R_{AS} = 20 \Omega$, and $C_{AS} = 10 \text{ nF}$ unless otherwise stated. Typical values are for reference only, and are not tested in production.
- For packages without dedicated V_{REFH} and V_{REFL} pins, V_{REFH} is internally tied to V_{DDA}, and V_{REFL} is internally tied to V_{SS}.
 To get maximum performance, reference supply quality should be better than SAR ADC. See application note AN5032 for details.
- 3. Clock and compare cycle need to be set according to the guidelines mentioned in the Reference Manual .
- 4. ADC conversion will become less reliable above maximum frequency.
- 5. When using ADC hardware averaging, see the Reference Manual to determine the most appropriate setting for AVGS.
- 6. Numbers based on the minimum sampling time of 275 ns.
- 7. For guidelines and examples of conversion rate calculation, see the Reference Manual section 'Calibration function'

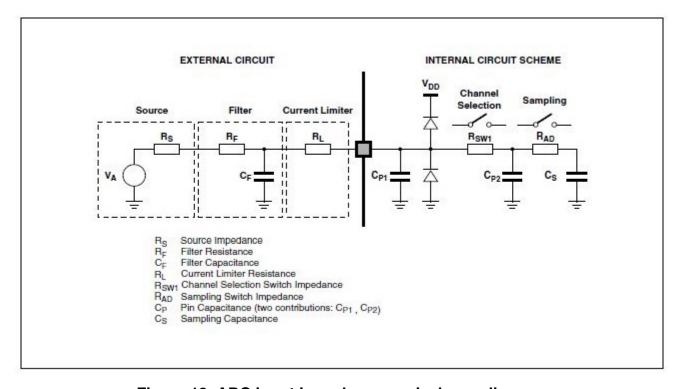


Figure 13. ADC input impedance equivalency diagram

6.4.1.2 12-bit ADC electrical characteristics

NOTE

- ADC performance specifications are documented using a single ADC. For parallel/simultaneous operation of both ADCs, either for sampling the same channel by both ADCs or for sampling different channels by each ADC, some amount of decrease in performance can be expected. Care must be taken to stagger the two ADC conversions, in particular the sample phase, to minimize the impact of simultaneous conversions.
- On reduced pin packages where ADC reference pins are shared with supply pins, ADC analog performance characteristics may be impacted. The amount of variation will be directly impacted by the external PCB layout and hence care must be taken with PCB routing. See AN5426 for details

Table 28. 12-bit ADC characteristics (2.7 V to 3 V) ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SS}$)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
V_{DDA}	Supply voltage		2.7	_	3	V	
I _{DDA_ADC}	Supply current per ADC		_	0.6	_	mA	3
SMPLTS	Sample Time		275	_	Refer to the Reference Manual	ns	
TUE ⁴	Total unadjusted error		_	±4	±8	LSB ⁵	6, 7, 8, 9
DNL	Differential non-linearity		_	±1.0	_	LSB ⁵	6, 7, 8, 9
INL	Integral non-linearity		1	±2.0	_	LSB ⁵	6, 7, 8, 9

- 1. All accuracy numbers assume the ADC is calibrated with V_{REFH}=V_{DDA}=V_{DD}, with the calibration frequency set to less than or equal to half of the maximum specified ADC clock frequency.
- 2. Typical values assume $V_{DDA} = 3 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 40 \text{ MHz}$, $R_{AS} = 20 \Omega$, and $C_{AS} = 10 \text{ nF}$.
- 3. The ADC supply current depends on the ADC conversion rate.
- 4. Represents total static error, which includes offset and full scale error.
- 5. $1 LSB = (V_{REFH} V_{REFL})/2^N$
- 6. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device use case scenario. When using ADC averaging, refer to the *Reference Manual* to determine the most appropriate settings for AVGS.
- For ADC signals adjacent to V_{DD}/V_{SS} or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC performance may be observed.
- 8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the internal analog parameters, assume minor degradation.
- 9. All the parameters in the table are given assuming system clock as the clocking source for ADC.

Table 29. 12-bit ADC characteristics (3 V to 5.5 V)($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SS}$)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
V_{DDA}	Supply voltage		3	_	5.5	V	
I _{DDA_ADC}	Supply current per ADC		_	1	_	mA	3
SMPLTS	Sample Time		275	_	Refer to the Reference Manual	ns	
TUE ⁴	Total unadjusted error			±4	±8	LSB ⁵	6, 7, 8, 9
DNL	Differential non-linearity		_	±0.7	_	LSB ⁵	6, 7, 8, 9
INL	Integral non-linearity		_	±1.0	_	LSB ⁵	6, 7, 8, 9

- 1. All accuracy numbers assume the ADC is calibrated with V_{REFH}=V_{DDA}=V_{DD}, with the calibration frequency set to less than or equal to half of the maximum specified ADC clock frequency.
- 2. Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 40 MHz, R_{AS} =20 Ω , and C_{AS} =10 nF unless otherwise stated.
- 3. The ADC supply current depends on the ADC conversion rate.
- 4. Represents total static error, which includes offset and full scale error.
- 5. $1 LSB = (V_{REFH} V_{REFL})/2^{N}$
- The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device use case scenario. When using ADC averaging, refer to the Reference Manual to determine the most appropriate settings for AVGS.
- For ADC signals adjacent to V_{DD}/V_{SS} or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC performance may be observed.
- 8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the internal analog parameters, assume minor degradation.
- 9. All the parameters in the table are given assuming system clock as the clocking source for ADC.

NOTE

- Due to triple bonding in lower pin packages like 32-QFN, 48-LQFP, and 64-LQFP degradation might be seen in ADC parameters.
- When using high speed interfaces such as the QuadSPI, SAI0, SAI1 or ENET there may be some ADC degradation on the adjacent analog input paths. See following table for details.

Pin name	TGATE purpose					
PTE8	CMP0_IN3					
PTC3	ADC0_SE11/CMP0_IN4					
PTC2	ADC0_SE10/CMP0_IN5					
PTD7	CMP0_IN6					
PTD6	CMP0_IN7					
PTD28	ADC1_SE22					
PTD27	ADC1_SE21					

6.4.2 CMP with 8-bit DAC electrical specifications

Table 31. Comparator with 8-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit			
I _{DDHS}	Supply current, High-speed mode ¹				μA			
	-40 - 125 ℃	_	230	300				
I _{DDLS}	Supply current, Low-speed mode ¹				μΑ			
	-40 - 105 ℃	_	6	11				
	-40 - 125 °C		6	13				
V _{AIN}	Analog input voltage	0	0 - V _{DDA}	V_{DDA}	V			
V _{AIO}	Analog input offset voltage, High-speed mode				mV			
	-40 - 125 °C	-25	±1	25				
V _{AIO}	Analog input offset voltage, Low-speed mode				mV			
	-40 - 125 °C	-40	±4	40				
t _{DHSB}	Propagation delay, High-speed mode ²				ns			
	-40 - 105 °C	_	35	200				
	-40 - 125 °C		35	300				
t _{DLSB}	Propagation delay, Low-speed mode ²				μs			
	-40 - 105 °C	_	0.5	2				
	-40 - 125 ℃	_	0.5	3				
t _{DHSS}	Propagation delay, High-speed mode ³		-		ns			
	-40 - 105 °C	_	70	400				
	-40 - 125 ℃	_	70	500				
t _{DLSS}	Propagation delay, Low-speed mode ³				μs			
	-40 - 105 °C	_	1	5				
	-40 - 125 ℃	_	1	5				
t _{IDHS}	Initialization delay, High-speed mode ⁴				μs			
	-40 - 125 ℃	_	1.5	3				
t _{IDLS}	Initialization delay, Low-speed mode ⁴				μs			
	-40 - 125 °C	_	10	30				
V _{HYST0}	Analog comparator hysteresis, Hyst0				mV			
	-40 - 125 ℃	_	0	_				
V _{HYST1}	Analog comparator hysteresis, Hyst1, High-speed mode				mV			
	-40 - 125 ℃	_	19	66				
	Analog comparator hysteresis, Hyst1, Low-speed mode		-1					
	-40 - 125 °C	_	15	40				
V _{HYST2}	Analog comparator hysteresis, Hyst2, High-speed mode				mV			
	-40 - 125 ℃	_	34	133				

Table continues on the next page...

Table 31. Comparator with 8-bit DAC electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit
	Analog comparator hysteresis, Hyst2, Low-speed mode				
	-40 - 125 °C	_	23	80	
V _{HYST3}	Analog comparator hysteresis, Hyst3, High-speed mode				mV
	-40 - 125 °C	_	46	200	
	Analog comparator hysteresis, Hyst3, Low-speed mode				
	-40 - 125 °C	_	32	120	
I _{DAC8b}	8-bit DAC current adder (enabled)				
	3.3V Reference Voltage	_	6	9	μA
	5V Reference Voltage	_	10	16	μA
INL ⁵	8-bit DAC integral non-linearity	-0.75	_	0.75	LSB ⁶
DNL	8-bit DAC differential non-linearity	-0.5	_	0.5	LSB ⁶
t _{DDAC}	Initialization and switching settling time	_	_	30	μs

- 1. Difference at input > 200mV
- 2. Applied \pm (100 mV + V_{HYST0/1/2/3}+ max. of V_{AIO}) around switch point.
- 3. Applied \pm (30 mV + 2 × V_{HYST0/1/2/3}+ max. of V_{AIO}) around switch point.
- 4. Applied \pm (100 mV + V_{HYST0/1/2/3}).
- 5. Calculation method used: Linear Regression Least Square Method
- 6. $1 LSB = V_{reference}/256$

NOTE

For comparator IN signals adjacent to V_{DD}/V_{SS} or XTAL/EXTAL or switching pins cross coupling may happen and hence hysteresis settings can be used to obtain the desired comparator performance. Additionally, an external capacitor (1nF) should be used to filter noise on input signal. Also, source drive should not be weak (Signal with < 50 K pull up/down is recommended).

ADC electrical specifications

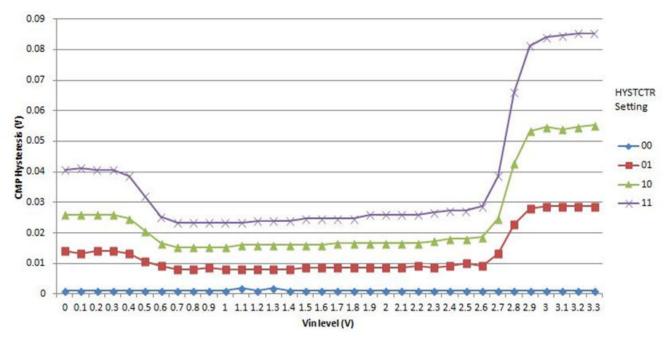


Figure 14. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 0)

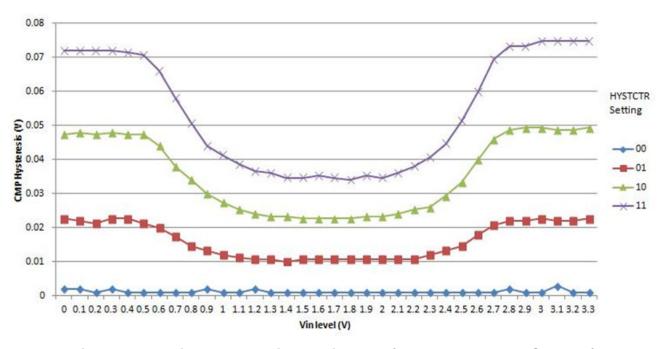


Figure 15. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 1)

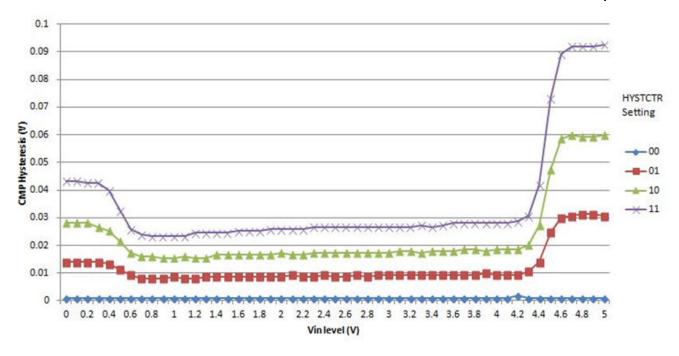


Figure 16. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 0)

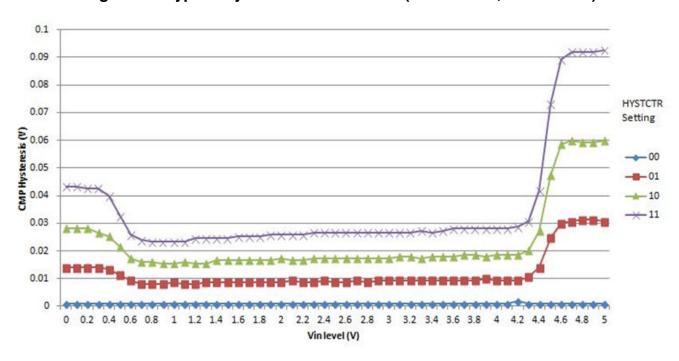


Figure 17. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 1)

6.5 Communication modules

6.5.1 LPUART electrical specifications

Refer to General AC specifications for LPUART specifications.

6.5.1.1 Supported baud rate

Baud rate = Baud clock / ((OSR+1) * SBR).

For details, see section: 'Baud rate generation' of the *Reference Manual*.

6.5.2 LPSPI electrical specifications

The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic LPSPI timing modes.

- All timing is shown with respect to 20% V_{DD} and 80% V_{DD} thresholds.
- All measurements are with maximum output load of 50 pF, input transition of 1 ns and pad configured with fastest slew setting (DSE = 1).

Table 32. LPSPI electrical specifications1

Unit			MHz				MHz				ns				ns			
	01 /	Мах.	4	4	4	4	7	2	2	7	ı	ı	1	1		ı		
VLPR Mode	3.3 V	Min.	,	ı	ı	ı	ı	ı	ı	ı	200	200	200	200	,		09- ^L	(PCSSCK+1)*t _{perip} h
VLPR	5.0 V IO	Мах.	4	4	4	4	2	2	2	2			1					
	5.0	Min.				1				1	200	200	200	200			09- ^L	(PCSSCK+1)*t _{perip} h
	3.3 V IO	Мах.	99	56	48	48	14 7	14 7	12	12	ı	ı			1	ı		
HSRUN Mode ²	3.3	Min.	ı	ı	1	ı	ı	ı	1	ı	72	72	83	83	ı		9Z- ^L	(PCSSCK+1)*t _{perip} i
HSRUN	5.0 V IO	Мах.	99	56	48	48	14	14	24	12	ı	ı			ı	ı		
	2.0	Min.	ı	ı	ı	ı	ı	ı	ı	ı	72	72	42	83	1		9Z- ^L	(PCSSCK+1)*t _{perip} r
	0 ^	Мах.	40	40	48	48	10	10	12	12	ı	ı			1	ı		
Run Mode ²	3.3 V	Min.	1	ı		1	ı	ı	1	-	100	100	83	83	1		¹ -26	(PCSSCK+1)*t _{perip} r
Run	5.0 V IO	Мах.	40	40	40	48	10	10	20	12	ı	ı			1	ı		
	5.0	Min.	ı			ı		,	1	ı	100	100	20	83			25- ₁	(PCSSCK+1)*tperiph
Conditions			Slave	Master	Master Loopback ⁵	Master Loopback(slow) ⁶	Slave	Master	Master Loopback ⁵	Master Loopback(slow) ⁶	Slave	Master	Master Loopback ⁵	Master Loopback(slow) ⁶	Slave	Master	Master Loopback ⁵	Master Loopback(slow) ⁶
Description	1		Peripheral	Frequency			y of	operation			\ <u></u>	period				time (PCS to		
Symbol			fperiph, 3, 4				f _{op}				tspsck				t _{Lead} 8			
Num							-				2				က			

Table continues on the next page...

Table 32. LPSPI electrical specifications1 (continued)

Unit			SU				Su				su					SU			
	01 /	Мах.		ı				9+2	PSCK/2	SĮ.				1					ı
VLPR Mode	3.3 \	Min.	1		- 20	(SCKPCS+1)*tperiph		9-2	SPSCK ^I	³ 1	18	78		50	20	14	0	11	12
VLPR	5.0 V IO	Мах.		ı				g+a	PSCK/S	_S 1		ı		ı					
	5.0	Min.			- 20	(SCKPCS+1)*1periph		9-2	spsck [/]	§1	18	72		20	20	14	0	11	12
	01 /	Мах.	ı	ı				£+3	SPSCK/S	SĮ.						ı	ı		
HSRUN Mode ²	3.3	Min.	1		- 22	(2CKbC2+1) _* f ^{beubp}		£-3	SPSCK ^I	⁵ 1	2	3711	25	7	6	က	0	က	က
HSRUN	5.0 V IO	Мах.	1	ı				£+3	PSCK ^{/2}	S ₁					ı	1	ı	ı	
	5.0	Min.	1		- 52	(SCKPCS+1)*tperiph			SPSCK ^I		င	26		ည	7	ဇ	0	2	က
	0 /	Мах.	1	1				£+3	PSCK/S	S ₁				1			,		1
Run Mode ²	3.3 V	Min.	ı		- 52	(SCKPCS+1)*tperiph		g-3	SPSCK ^I	·1	5	38		ω	10	ဇ	0	က	က
Run	5.0 V IO	Мах.	ı	ı				£+3	PSCK/S	S ₁							ı		
	5.0	Min.			- 22	(2CKbC2+1) _* f ^{benbp}			SPSCK ¹		က	59		7	∞	က	0	က	က
Conditions			Slave	Master	Master Loopback ⁵	Master Loopback(slow) ⁶	Slave	Master	Master Loopback ⁵	Master Loopback(slow) ⁶	Slave	Master		Master Loopback ⁵	Master Loopback(slow) ⁶	Slave	Master	Master Loopback ⁵	Master Loopback(slow) ⁶
Description			Enable lag	time (After			Clock(SPSCK) high or low	l		Data setup					Data hold			
Symbol			t _{Lag} 9				twspsck ¹⁰	<u> </u>			tsu					Ţ			
Num			4				2				9					7			

Table continues on the next page...

Table continues on the next page...

Table 32. LPSPI electrical specifications1 (continued)

Unit			SU	ns	SU				SU				SU				ns		
	<u>o</u>	Мах.	100	100	96	48	48	44			1	1	-				25		
Mode	3.3 V IO	Min.	1	1	1	ı	1	1	4	-29	-19	-27	ı	ı	1	ı		ı	ı
VLPR Mode	5.0 V IO	Мах.	100	100	92	47	47	44		ı			-				25		
	5.0	Min.			ı	1		1	4	-22	-14	-21		ı				•	
	3.3 V IO	Мах.	20	50	36 ¹¹ 31 ¹²	15	15	6	1	ı		ı	-				25		
HSRUN Mode ²	3.3	Min.	-		•	-		1	4	-23	-14	-22	1	1				1	1
HSRUN	5.0 V IO	Мах.	20	50	26	11	1	7	ı	ı		ı	-				25	_	
	2.0	Min.	ı	1	1		1	1	4	-15	-10	-15	1		1	1		ı	ı
	3.3 V IO	Мах.	50	50	39	16	16	10	ı	ı			1				25		
Run Mode ²	3.3	Min.			1				4	-22	-14	-22	ı	1				ı	1
Run	5.0 V IO	Мах.	20	50	30	12	12	8		ı			-				25		
1	5.0	Min.	1	1	1		1	1	4	-15	-10	-15			1	1			ı
Conditions			Slave	Slave	Slave	Master	Master Loopback ⁵	Master Loopback(slow) ⁶	Slave	Master	Master Loopback ⁵	Master Loopback(slow) ⁶	Slave	Master	Master Loopback ⁵	Master Loopback(slow) ⁶	Slave	Master	Master Loopback ⁵
Description			Slave access time	Slave MISO (SOUT) disable time	Data valid (after SPSCK edge)))) ;				time(outputs)			Fall time	input			all time	output	
Symbol			†a	tdis	t _v				фно				t _{RI/FI}				t _{RO/FO}		
Num			80	0	10				Ξ				12				13		

Table 32. LPSPI electrical specifications1 (continued)

mu	nıca	tion	module
Unit			
	0	Мах.	
Mode	3.3 V IO	Min.	1
VLPR Mode	5.0 V IO	Мах.	
	5.0	Min.	ı
	3.3 V IO	Мах.	
HSRUN Mode ²	3.3	Min.	1
HSRUN	5.0 V IO	Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.	
	5.0	Min.	ı
	3.3 V IO	Мах.	
Run Mode ²	3.3	Min.	ı
Run	5.0 V IO	Мах.	
	5.0	Min.	
Conditions			Master Loopback(slow)
Num Symbol Description			
Symbol			
Num			

Frace length should not exceed 11 inches for SCK pad when used in Master loopback mode.

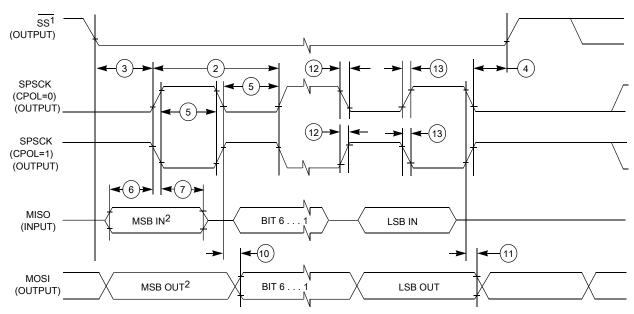
While transitioning from HSRUN mode to RUN mode, LPSPI output clock should not be more than 14 MHz.

periph = LPSPI peripheral clock

theriph = 1/fperiph Master Loopback mode - In this mode LPSPI_SCK clock is delayed for sampling the input data which is enabled by setting LPSPI_CFGR1[SAMPLE] bit as 1.

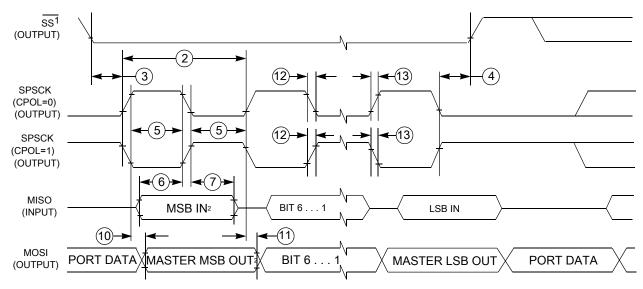
Clock pads used are PTD15 and PTE0. Applicable only for LPSP10.

Master Loopback (slow) - In this mode LPSPL_SCK clock is delayed for sampling the input data which is enabled by setting LPSPL_CFGR1[SAMPLE] bit as 1. Clock pad used is PTB2. Applicable only for LPSPI0. o.


This is the maximum operating frequency (fop) for LPSP10 with medium PAD type only. Otherwise, the maximum operating frequency (fop) is 12 Mhz. Set the PCSSCK configuration bit as 0, for a minimum of 1 delay cycle of LPSPI baud rate clock, where PCSSCK ranges from 0 to 255 7. 8. 6.

Set the SCKPCS configuration bit as 0, for a minimum of 1 delay cycle of LPSPI baud rate clock, where SCKPCS ranges from 0 to 255

While selecting odd dividers, ensure Duty Cycle is meeting this parameter.


Maximum operating frequency (f_{op}) is 12 MHz irrespective of PAD type and LPSPI instance.

Applicable for LPSP10 only with medium PAD type, with maximum operating frequency (fop) as 14 MHz

- 1. If configured as an output.
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 18. LPSPI master mode timing (CPHA = 0)

- 1.If configured as output
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 19. LPSPI master mode timing (CPHA = 1)

Communication modules

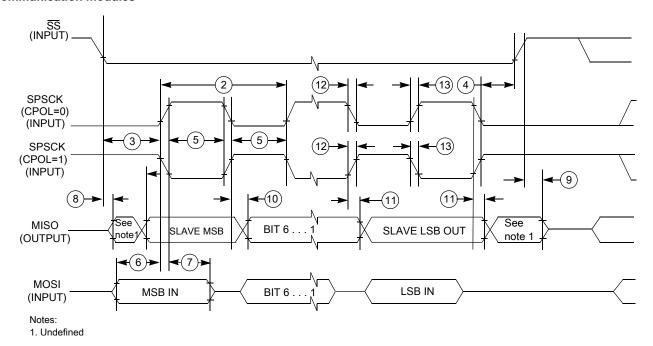


Figure 20. LPSPI slave mode timing (CPHA = 0)

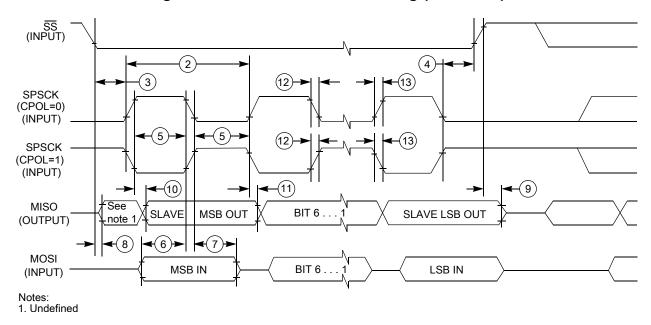


Figure 21. LPSPI slave mode timing (CPHA = 1)

6.5.3 LPI2C electrical specifications

See General AC specifications for LPI2C specifications.

For supported baud rate see section 'Chip-specific LPI2C information' of the *Reference Manual*.

6.5.4 FlexCAN electical specifications

For supported baud rate, see section 'Protocol timing' of the *Reference Manual*.

6.5.5 SAI electrical specifications

The following table describes the SAI electrical characteristics.

- Measurements are with maximum output load of 50 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Table 33. Master mode timing specifications

Symbol	Description	Min.	Max.	Unit
_	Operating voltage	2.97	3.6	V
S1	SAI_MCLK cycle time	40	_	ns
S2	SAI_MCLK pulse width high/low	45%	55%	MCLK period
S3	SAI_BCLK cycle time	80	_	ns
S4	SAI_BCLK pulse width high/low	45%	55%	BCLK period
S5	SAI_RXD input setup before SAI_BCLK	28	_	ns
S6	SAI_RXD input hold after SAI_BCLK	0	_	ns
S7	SAI_BCLK to SAI_TXD output valid	_	8	ns
S8	SAI_BCLK to SAI_TXD output invalid	-2	_	ns
S9	SAI_FS input setup before SAI_BCLK	28	_	ns
S10	SAI_FS input hold after SAI_BCLK	0	_	ns
S11	SAI_BCLK to SAI_FS output valid	_	8	ns
S12	SAI_BCLK to SAI_FS output invalid	-2	_	ns

Communication modules

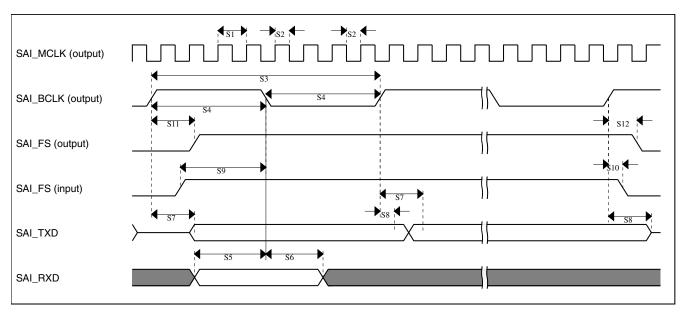


Figure 22. SAI Timing — Master modes

Table 34. Slave mode timing specifications

Symbol	Description	Min.	Max.	Unit
_	Operating voltage	2.97	3.6	V
S13	SAI_BCLK cycle time (input)	80	_	ns
S14 ¹	SAI_BCLK pulse width high/low (input)	45%	55%	BCLK period
S15	SAI_RXD input setup before SAI_BCLK	8	_	ns
S16	SAI_RXD input hold after SAI_BCLK	2	_	ns
S17	SAI_BCLK to SAI_TXD output valid	_	28	ns
S18	SAI_BCLK to SAI_TXD output invalid	0	_	ns
S19	SAI_FS input setup before SAI_BCLK	8	_	ns
S20	SAI_FS input hold after SAI_BCLK	2	_	ns
S21	SAI_BCLK to SAI_FS output valid	_	28	ns
S22	SAI_BCLK to SAI_FS output invalid	0	_	ns

^{1.} The slave mode parameters (S15 - S22) assume 50% duty cycle on SAI_BCLK input. Any change in SAI_BCLK duty cycle input must be taken care during the board design or by the master timing.

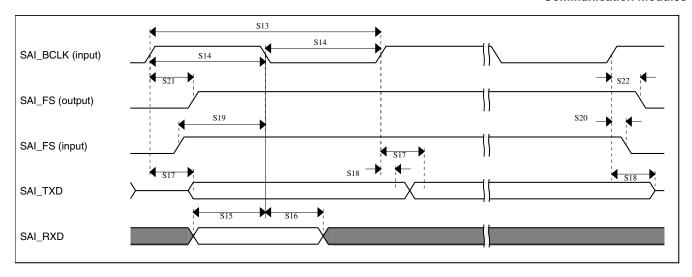


Figure 23. SAI Timing — Slave modes

6.5.6 Ethernet AC specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

The following table describes the MII electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Symbol	Description	Min.	Max.	Unit
_	RXCLK frequency	_	25	MHz
MII1	RXCLK pulse width high	35%	65%	RXCLK period
MII2	RXCLK pulse width low	35%	65%	RXCLK period
MII3	RXD[3:0], RXDV, RXER to RXCLK setup	5	_	ns
MII4	RXCLK to RXD[3:0], RXDV, RXER hold	5	_	ns
_	TXCLK frequency	_	25	MHz
MII5	TXCLK pulse width high	35%	65%	TXCLK period
MII6	TXCLK pulse width low	35%	65%	TXCLK period
MII7	TXCLK to TXD[3:0], TXEN, TXER invalid	2	_	ns
MII8	TXCLK to TXD[3:0], TXEN, TXER valid	_	25	ns

Table 35. MII signal switching specifications

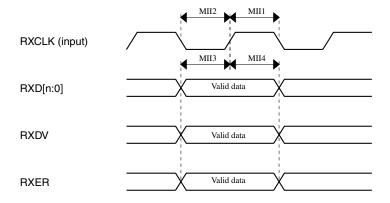


Figure 24. MII receive diagram

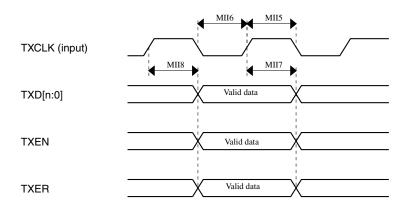


Figure 25. MII transmit signal diagram

The following table describes the RMII electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Table 36. RMII signal switching specifications

Symbol	Description	Min.	Max.	Unit
_	RMII input clock RMII_CLK Frequency	_	50	MHz
RMII1, RMII5	RMII_CLK pulse width high	35%	65%	RMII_CLK period
RMII2, RMII6	RMII_CLK pulse width low	35%	65%	RMII_CLK period
RMII3	RXD[1:0], CRS_DV, RXER to RMII_CLK setup	4	_	ns
RMII4	RMII_CLK to RXD[1:0], CRS_DV, RXER hold	2	_	ns

Table continues on the next page...

Table 36. RMII signal switching specifications (continued)

Symbol	Description	Min.	Max.	Unit
RMII7	RMII_CLK to TXD[1:0], TXEN invalid	2	_	ns
RMII8	RMII_CLK to TXD[1:0], TXEN valid	_	15	ns

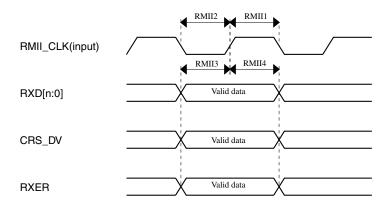


Figure 26. RMII receive diagram

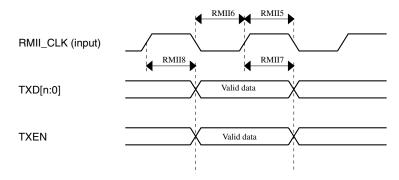


Figure 27. RMII transmit diagram

The following table describes the MDIO electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.
- MDIO pin must have external Pull-up.

Table 37. MDIO timing specifications

Symbol	Description	Min.	Max.	Unit
_	MDC Clock Frequency	_	2.5	MHz

Table continues on the next page...

Table 37. MDIO timing specifications (continued)

Symbol	Description	Min.	Max.	Unit
MDC1	MDC pulse width high	40%	60%	MDC period
MDC2	MDC pulse width low	40%	60%	MDC period
MDC3	MDIO (input) to MDC rising edge setup	25	_	ns
MDC4	MDIO (input) to MDC rising edge hold	0	_	ns
MDC5	MDC falling edge to MDIO output valid (maximum propagation delay)	_	25	ns
MDC6	MDC falling edge to MDIO output invalid (minimum propagation delay)	-10	_	ns

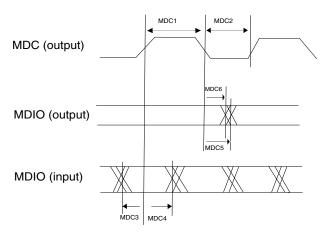


Figure 28. MII/RMII serial management channel timing diagram

6.5.7 Clockout frequency

Maximum supported clock out frequency for this device is 20 MHz

6.6 Debug modules

6.6.1 SWD electrical specofications

NXP Semiconductors

Table 38. SWD electrical specifications

Symbol	Description		Run	Run Mode			HSRUI	HSRUN Mode			VLPR Mode	Mode		Unit
		5.0 V	OI A	3.3 V IO	01 /	5.0	5.0 V IO	3.3	3.3 V IO	5.0	5.0 V IO	3.3	3.3 V IO	
		Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	
S1	SWD_CLK frequency of operation	,	52		25	ı	25	1	25	ı	10	ı	10	MHz
S2	SWD_CLK cycle period	1/S1	,	1/S1	,	1/S1	ı	1/S1		1/S1		1/S1		Su
S3	SWD_CLK clock pulse width	25/25 - 2	9 + 2/38	25/5 - 2	25/5 + 5	25/5 - 2	25\5 + 2	25/5 - 5	27/2 + 5	25/5 - <u>5</u>	25/S + 5	25/2 - 5	25/5 + 5	SU
S4	SWD_CLK rise and fall times	ı	-	ı	-	ı	-	ı	-	į	1	ı	-	SU
68	SWD_DIO input data setup time to SWD_CLK rise	4	1	4	1	4	1	4		16		16		SU
S10	SWD_DIO input data hold time after SWD_CLK rise	က	1	က	1	က	1	င	1	10		10		SU
S11	SWD_CLK high to SWD_DIO data valid	•	28	ı	38	ı	28	ı	38		02	1	77	SU
S12	SWD_CLK high to SWD_DIO high-Z		28		38	1	28	1	38	1	02	1	77	SU
S13	SWD_CLK high to SWD_DIO data invalid	0	ı	0	ı	0	ı	0		0	-	0	ı	SU

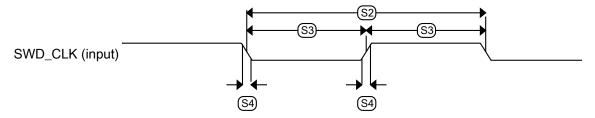


Figure 29. Serial wire clock input timing

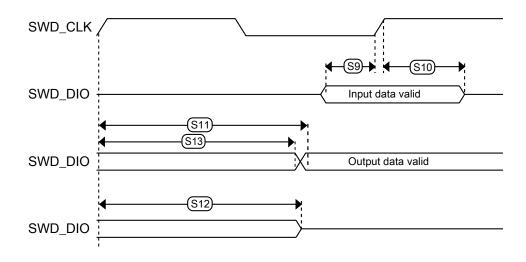


Figure 30. Serial wire data timing

6.6.2 Trace electrical specifications

The following table describes the Trace electrical characteristics.

- Measurements are with maximum output load of 50 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Table 39. Trace specifications

	Symbol	Description	R	UN Mode	•	HSRUI	N Mode	VLPR Mode	Unit
_	Fsys	System frequency	80	48	40	112	80	4	MHz

Table continues on the next page...

Table 39. Trace specifications (continued)

	Symbol	Description	R	RUN Mode	•	HSRUI	N Mode	VLPR Mode	Unit
	f _{TRACE}	Max Trace frequency	80	48	40	74.667	80	4	MHz
ads	t _{DVO}	Data Output Valid	4	4	4	4	4	20	ns
Trace on fast pads	t _{DIV}	Data Output Invalid	-2	-2	-2	-2	-2	-10	ns
	f _{TRACE}	Max Trace frequency	22.86	24	20	22.4	22.86	4	MHz
spg	t _{DVO}	Data Output Valid	8	8	8	8	8	20	ns
Trace on slow pads	t _{DIV}	Data Output Invalid	-4	-4	-4	-4	-4	-10	ns

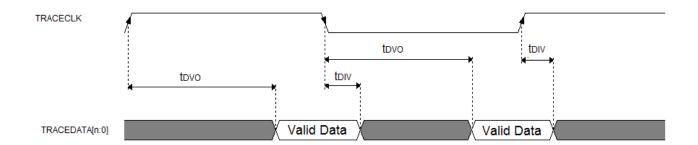


Figure 31. TRACE CLKOUT specifications

6.6.3 JTAG electrical specifications

Table 40. JTAG electrical specifications

Unit			MHz			SU	ns			ns	SU	ns	ns		SU	ns	ns	ns	ns	ns
<u> </u>		Мах.	_	10	10					_			08		08			80		80
	3.3 V IO			_				9	12/2 +				ω		ω			ω		ω
VLPR Mode	3.	Min.		,	ı	1/JI		g	- 2/2۲	•	15	8	ı	0	ı	15	ω	,	0	1
VLPR	5.0 V IO	Мах.		10	10	ı		g	12/2 +	-		•	80		80	ı		80	•	80
	5.0	Min.		ı	ı	1/JI		g	- 2/2r	ı	15	8	ı	0	1	15	8	ı	0	
	01/	Мах.		20	20	ı		g	12\2 +	-	1	ı	32	1	32	ı	1	32	ı	32
Mode	3.3 V IO	Min.		ı	ı	1/JI		g	- 2/2Ր	ı	5	5	1	0	1	င	2	ı	0	
HSRUN Mode	01/	Мах.		20	20	ı		g	15/2 +	-	ı	ı	28	1	28	ı	ı	28	1	28
	5.0 V IO	Min.				1/JI		g	- 2/2r		5	2	1	0			2		0	ı
	01/	Мах.		20	20	ı			12\2 +	-	1		32	1	32	1	1	32		32
Run Mode	3.3 V IO	Min.		ı	ı	1/JI		g	- 2/2Ր	ı	2	5	1	0	1	င	2	ı	0	
Run	5.0 V IO	Мах.		20	20	ı		9	ተ Z/ZՐ	-	1		28	1	28		1	28		28
	5.0	Min.		1	ı	1/1			- 2/2Ր		5	2	ı	0	1	3	2	-	0	
Description			TCLK frequency of operation	Boundary Scan	JTAG	TCLK cycle period	TCLK clock pulse width	Boundary Scan	JTAG	TCLK rise and fall times	Boundary scan input data setup time to TCLK rise	Boundary scan input data hold time after TCLK rise	TCLK low to boundary scan output data valid	TCLK low to boundary scan output data invalid	TCLK low to boundary scan output high-Z	TMS, TDI input data setup time to TCLK rise	TMS, TDI input data hold time after TCLK rise	TCLK low to TDO data valid	TCLK low to TDO data invalid	TCLK low to TDO high-Z
Symbol			5			J2	J3			J4	JS	96	7	96	6F	J10	111	J12	J13	J14

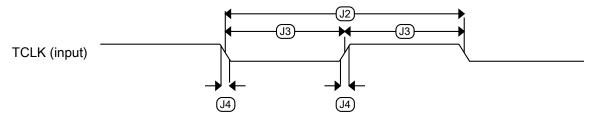


Figure 32. Test clock input timing

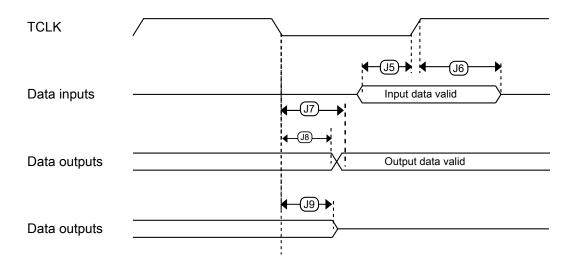


Figure 33. Boundary scan (JTAG) timing

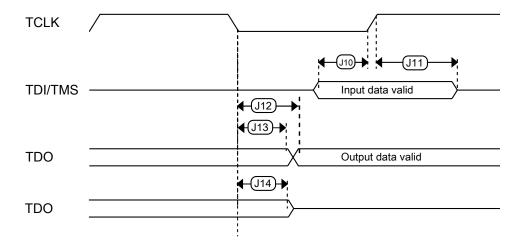


Figure 34. Test Access Port timing

7 Thermal attributes

7.1 Description

The tables in the following sections describe the thermal characteristics of the device.

NOTE

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting side (board) temperature, ambient temperature, air flow, power dissipation or other components on the board, and board thermal resistance.

7.2 Thermal characteristics

322K116 S32K118 S32K142 S32K144 S32K146 S32K148 S32K148 S32K148 S32K148 S32K146 S32K148 S32K148 S32K146 S32K148 NA NA<	Rating	Conditions Symbol Package	Symbol	Package			Val	Values			Unit
Single layer R _{Buk} 32 93 NA					S32K116	S32K118	S32K142	S32K144	S32K146	S32K148	
Doard (1s)	Thermal resistance, Junction to Ambient	Single layer	ReJA	32	93	NA	ΑΝ	ΑN	NA	ΝΑ	°C/W
Two layer Pear A 64 NA 62 61 61 59 51 59 100 NA NA NA NA NA NA NA	(Natural Convection) ^{1, 2}	board (1s)		48	79	71	Ν	¥	NA	ΑN	
Two layer R _{0.1M} R _{0.}				64	NA	62	61	61	59	ΑN	
Two layer				100	NA	NA	53	52	51	NA	
Two layer R _{BuNA} 32 50 NA				144	NA	NA	ΝΑ	¥.	51	44	
Two layer ReuA 32 50 NA A4				176	NA	NA	NA	¥	NA	42	
Doard (1stp) 48	Thermal resistance, Junction to Ambient	Two layer	ReJA	32	50	NA	NA	¥	Ν	NA	
Four layer ReJMA Rel NA NA NA NA NA NA NA N	(Natural Convection)	board (1s1p)		48	58	20	NA	¥	ΝΑ	NA	
Four layer R _{buka} 32 32 NA				64	NA	46	45	45	44	NA	
Four layer R _{9,MA} 32 32 NA				100	NA	NA	42	42	40	NA	
Four layer R _{BulA} 32 32 NA				144	NA	NA	ΝΑ	¥	44	37	
Four layer ReJA 32 32 NA A1 A1 NA NA A2 A1 A2 A3 A3 A3 A3 A3 A3 A3 A4 A3 A4 A3 A4				176	NA	NA	Ν A	¥	NA	36	
board (2s2p) 48 55 47 NA NA NA 64 NA 44 43 43 41 64 NA A4 43 41 41 100 NA NA A0 39 42 176 NA NA NA NA 42 Single layer 176 NA NA NA NA NA Single layer 176 NA NA NA NA NA NA Board (1s) 48 66 58 NA NA NA NA Two layer 64 NA NA NA NA NA NA Two layer ReJuna 32 43 NA NA NA NA Two layer ReJuna 32 43 NA NA NA G4 NA NA NA NA NA NA Two layer Red	Thermal resistance, Junction to Ambient	Four layer	ReJA	32	32	NA	N A	¥ V	NA	NA	
Single layer R _{9,MA} (151) Two layer R _{9,MA}	(Natural Convection) ^{1, 2}	board (2s2p)		48	55	47	ΝΑ	¥.	NA	NA	
Single layer R _{9JMA} 32 77 NA				64	NA	44	43	43	41	NA	
Single layer R _{BJMA} 32 77 NA				100	NA	NA	40	40	39	NA	
Single layer R _{BJMA} 32 77 NA				144	NA	NA	ΝΑ	¥.	42	36	
Single layer ReJIMA 32 77 NA A43 42 44 48 42 41 A2 41 A2 41 A2 41 A2 42				176	NA	NA	ΝΑ	ΑN	NA	35	
board (1s) 48 66 58 NA NA NA 64 NA 50 49 48 48 100 NA NA 43 42 41 144 NA NA NA 42 41 176 NA NA NA NA NA Two layer ReJMA 32 43 NA NA NA 64 NA 39 38 37 100 NA NA NA	Thermal resistance, Junction to Ambient	Single layer	Велма	32	77	NA	NA	¥	Ν	NA	
Two layer ReJIMA 64 NA 49 49 48 48 48 48 48 48 41 14 144 NA NA NA 42 41 14 14 14 NA NA 14 14 14 14 NA NA NA 14 14 NA	(@200 ft/min) ^{1, 3}	board (1s)		48	99	28	NA	¥	NA	AN	
Two layer ReJIMA A8 43 42 41 Two layer ReJIMA 176 NA NA NA NA NA Two layer ReJIMA 32 43 NA NA NA NA Foard (151p) 48 51 43 NA NA NA NA 100 NA NA 35 35 34 37				64	NA	20	49	49	48	ΑN	
Two layer ReJIMA 32 43 NA NA NA 42 Two layer ReJIMA 32 43 NA NA NA NA board (1s1p) 48 51 43 NA NA NA 64 NA 39 38 37 100 100 NA NA 35 35 34				100	NA	NA	43	42	41	NA	
Two layer ReJIMA 32 43 NA NA NA NA NA board (1s1p) 48 51 43 NA NA NA NA 64 NA 39 38 37 100 NA NA 35 35 34				144	NA	NA	NA	¥	42	36	
Two layer ReJMA 32 43 NA NA NA NA NA board (1s1p) 48 51 43 NA NA NA NA NA S7 100 NA NA 35 35 34 34 34 34 34 34 35 35 34 35 34 35 35 34 35 35 34 35 35 34 35 34 35 34 35 34 35 35 34 35 34 35 35 34 35 35 35 34 35 35 34 35 35 34 35 35 35 34 35<				176	NA	NA	NA	Ą	NA	34	
board (1s1p) 48 51 43 NA NA NA 64 NA 39 38 37 100 NA NA 35 35 34	Thermal resistance, Junction to Ambient	Two layer	Р _е ЈМА	32	43	NA	NA	¥	NA	NA	
NA 39 38 38 37 37 NA NA 35 35 34	(@200 ft/min)	board (1s1p)		48	51	43	NA	¥	NA	NA	
NA NA 35 35 34				64	NA	39	88	38	37	NA	
				100	NA	NA	35	35	34	NA	

Table continues on the next page...

Table 41. Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package (continued)

±ic I																											
	S32K148	31	30	NA	NA	NA	NA	30	29	NA	NA	NA	NA	24	24	NA	NA	NA	NA	6	6						
	S32K146	37	NA	NA	ΝΑ	35	33	36	NA	NA	ΝΑ	23	24	30	NA	NA	NA	11	11	12	NA						
90	S32K144	NA	NA	NA	ΝΑ	36	34	ΝΑ	NA	NA	ΝΑ	25	25	NA	NA	NA	NA	12	12	ΝΑ	NA	NA	_				
Values	S32K142	ΑN	A N	¥ V	Ą	36	34	Ą	Ą	¥ ∀	Ą	25	25	¥.	¥.	AN AN	¥.	13	13	Ą	¥.		NA				
	S32K118	NA	AN	NA	41	37	NA	NA	NA	NA	24	56	NA	NA	NA	NA	19	14	NA	NA	NA						
	S32K116	ΑN	ΑN	56	48	ΑN	ΑΝ	ΑN	Ą	=	33	Ą	ΑN	ΑΝ	ΑΝ	ΑN	23	ΑN	ΑN	ΑΝ	ΑΝ	-	-				
Dackade		144	176	32	48	64	100	144	176	32	48	64	100	144	176	32	48	64	100	144	176	32	48	64	100	144	176
Symbol	Ó			Велма						ReJB						Reuc						ReJCBottom					
Conditions				Four layer	board (2s2p)					1						1						1					
, Sating Co.	n :			Thermal resistance, Junction to Ambient	(@200 ft/min) ^{1, 3}					Thermal resistance, Junction to Board ⁴						Thermal resistance, Junction to Case 5						Thermal resistance, Junction to Case	(Bottom) ⁶				

Table continues on the next page...

Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package (continued) Table 41.

Unit							
	S32K148	NA	NA	NA	NA	-	-
	S32K146	AN	¥	2	2	2	¥
sər	S32K144	NA	AN	2	2	AN	NA
Values	S32K142	NA	¥ A	2	2	¥.	ΑΝ
	S32K116 S32K118 S32K142 S32K144 S32K146 S32K148	AN	2	2	ΑΝ	ΑΝ	ΑΝ
	S32K116	1	4	ΝΑ	NA	NA	ΝΑ
Package	•	32	48	64	100	144	176
Symbol		т∩ф					
Conditions		Natural	Convection				
Rating		Thermal resistance, Junction to Package	Top/				

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively. flow, power dissipation of other components on the board, and board thermal resistance.

Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively vi ω 4.

Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.

Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek etters are not available, the thermal characterization parameter is written as Psi-JT. . 6 . 7

Table 42. Thermal characteristics for the 100 MAPBGA package

Rating	Conditions	Symbol		Values		Unit
			S32K146	S32K144	S32K148	
Thermal resistance, Junction to Ambient (Natural Convection) 1, 2	Single layer board (1s)	$R_{\theta JA}$	57.2	61.0	52.5	M/O°
Thermal resistance, Junction to Ambient (Natural Convection) 1, 2, 3	Four layer board (2s2p)	В _{еЈА}	32.1	35.6	27.5	M/O _°
Thermal resistance, Junction to Ambient (@200 ft/min) 1, 2, 3	Single layer board (1s)	Релма	44.1	46.6	39.0	%C/W
Thermal resistance, Junction to Ambient (@200 ft/min) ^{1, 3}	Two layer board (2s2p)	В _в лма	27.2	6.08	22.8	M/O _°
Thermal resistance, Junction to Board ⁴	I	RejB	15.3	18.9	11.2	%C/W
Thermal resistance, Junction to Case ⁵	_	Resc	10.2	14.2	7.5	%C/W
Thermal resistance, Junction to Package Top outside center ⁶		ψυτ	0.2	0.4	0.2	M/O _°
Thermal resistance, Junction to Package Bottom outside center ⁷		ФлВ	12.2	15.9	18.3	M/O _°

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal. 0, ω, 4,

Per JEDEC JESD51-6 with the board horizontal.

Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the

Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). 6.5

Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek etters are not available, the thermal characterization parameter is written as Psi-JT.

Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB

7.3 General notes for specifications at maximum junction temperature

An estimation of the chip junction temperature, T_I, can be obtained from this equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

- T_A = ambient temperature for the package (°C)
- $R_{\theta IA}$ = junction to ambient thermal resistance (°C/W)
- P_D = power dissipation in the package (W)

The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated.

When a heat sink is used, the thermal resistance is expressed in the following equation as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

- $R_{\theta IA}$ = junction to ambient thermal resistance (°C/W)
- $R_{\theta JC}$ = junction to case thermal resistance (°C/W)
- $R_{\theta CA}$ = case to ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device.

Dimensions

To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using this equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

- T_T = thermocouple temperature on top of the package (°C)
- Ψ_{IT} = thermal characterization parameter (°C/W)
- P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

8 Dimensions

8.1 Obtaining package dimensions

Package dimensions are provided in the package drawings.

To find a package drawing, go to http://www.nxp.com and perform a keyword search for the drawing's document number:

Package option	Document Number
32-pin QFN	SOT617-3 ¹
48-pin LQFP	98ASH00962A
64-pin LQFP	98ASS23234W
100-pin LQFP	98ASS23308W
100-pin MAPBGA	98ASA00802D
144-pin LQFP	98ASS23177W
176-pin LQFP	98ASS23479W

1. 5x5 mm package

9 Pinouts

9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

10 Revision History

The following table provides a revision history for this document.

Table 43. Revision History

Rev. No.	Date	Substantial Changes
1	12 Aug 2016	Initial release
2	03 March 2017	Updated descpition of QSPI and Clock interfaces in Key Features section Updated figure: High-level architecture diagram for the S32K1xx family Updated figure: S32K1xx product series comparison Added note in section Selecting orderable part number Updated figure: Ordering information In table: Absolute maximum ratings: Added footnote to I _{INJPAD_DC} Updated min and max value of I _{INJPAD_DC} Updated description, max and min values for I _{INJSUM} Updated V _{IN_TRANSIENT} In table: Voltage and current operating requirements: Renamed V _{SUP_OFF} Updated max value of V _{DD_OFF} Removed V _{INA} and V _{IN} Added V _{REFH} and V _{REFL} Updated footnote "Typical conditions assumes V _{DD} = V _{DDA} = V _{REFH} = 5 V Removed I _{NJSUM_AF} Updated footnotes in table Table 4 Updated section Power mode transition operating behaviors In table: Power consumption Added footnote "With PMC_REGSC[CLKBIASDIS] " Updated conditions for VLPR Removed Idd/MHz for S32K144 Updated numbers for S32K142 and S32K148 Removed lase case footnotes In section Modes configuration: Replaced table "Modes configuration" with spreadsheet attachment: 'S32K1xx_Power_Modes_Master_configuration_sheet' In table: DC electrical specifications at 3.3 V Range: Added footnote to High drive port pins In table: DC electrical specifications at 5.0 V Range:

Table continues on the next page...

Table 43. Revision History

Rev. No.	Date	Substantial Changes
		 Added footnotes V_{ih} Input Buffer High Voltage and V_{ih} Input Buffer Low
		Voltage
		Updated table: AC electrical specifications at 3.3 V range
		Updated table: AC electrical specifications at 5 V range
		In table: Standard input pin capacitance Added for the table to the Newson Insurance (COOK4 to a series)
		Added footnote to Normal run mode (S32K14x series) Description of the results of the r
		Removed note from 1M ohms Feedback Resistor in figure Oscillator connections scheme
		In table: External System Oscillator electrical specifications
		 Updated typical of I_{DDOSC} Supply current — low-gain mode (low-power mode) (HGO=0) 1 for 4 and 8 MHz
		Removed rows for I _{lk ext} EXTAL/XTAL impedence High-frequency, low-
		gain mode (low-power mode) and high-frequency, high-gain mode and V_{EXTAL}
		Updated Typ. of R _S low-gain mode
		 Updated description of R_F, R_S, and V_{PP}
		 Removed footnote from R_F Feedback resistor
		 Updated footnote for C₁ C₂ and R_F
		In table: Table 18
		Removed mention of high-frequency
		Added HGO 0, 1 information
		In table: Fast internal RC Oscillator electrical specifications
		Updated F _{FIRC} Updated description of A.F.
		 Updated description of ΔF Updated two and may values of T as yells to evals little and T along
		 Updated typ and max values of T_{JIT} cycle-to-cycle jitter and T_{JIT} Long term jitter over 1000 cycles
		 Added footnotes to T_{JIT} cycle-to-cycle jitter and T_{JIT} Long term jitter over 1000 cycles
		 Updated naming convention of I_{DDFIRC} Supply current
		 Added footnote to I_{DDFIRC} Supply current Added footnote to column Parameter
		In table: Slow internal RC oscillator (SIRC) electrical specifications
		Removed V _{DD} Supply current in 2 MHz Mode
		 Removed footnote and updated description of ΔF
		Updated footnote to F _{SIRC} and I _{DDSIRC}
		In table: SPLL electrical specifications
		Added row for F _{SPLL REF} PLL Reference
		Updated naming convention throughout the table
		Updated the max value of T _{SPLL_LOCK} Lock detector detection time
		In table: Flash timing specifications — commands
		Added footnotes:
		All command times assumes
		For all EEPROM Emulation terms
		 'First time' EERAM writes after a POR
		Removed footnote 'Assumes 25 MHz or'
		Updated Max of t _{eewr32bers}
		 Added parameters t_{quickwr} and t_{quickwrClnup}
		In table: Reliability specifications
		Removed Typ. values for all parameters
		Removed footnote 'Typical values represent '
		Added footnote 'Any other EEE driver usage '
		Updated QuadSPI AC specifications
		Removed topic: Reliability, Safety and Security modules And Application of the
		In table: 12-bit ADC operating conditions
		Updated V _{DDA}

Table continues on the next page...

77

Table 43. Revision History (continued)

Rev. No.	Date	Substantial Changes
		Updated values for V _{REFH} and V _{REFL} to add reference to the section "voltage and current operating requirments" for Min and Max valaues Updated footnote to Typ. Removed footnote from RAS Analog source resistance Updated figure: ADC input impedance equivalency diagram In table: 12-bit ADC characteristics (2.7 V to 3 V) (V _{REFH} = V _{DDA} , V _{REFL} = V _{SS}) Removed rows for V _{TEMP_S} and V _{TEMP25} Updated footnote to Typ. In table: 12-bit ADC characteristics (3 V to 5.5 V)(V _{REFH} = V _{DDA} , V _{REFL} = V _{SS}) Removed rows for V _{TEMP_S} and V _{TEMP25} Removed number for TUE Updated footnote to Typ. In table: Comparator with 8-bit DAC electrical specifications Updated Typ. of I _{DDLS} Supply current, Low-speed mode Updated Typ. of I _{DLSB} Propagation delay, Low-speed mode Updated Typ. of I _{DHSS} Propagation delay, High-speed mode Updated Typ. of I _{DDLC} Initialization and switching settling time Updated section LPSPI electrical specifications Added section: SAI electrical specifications Added section: Clockout frequency Added section: Trace electrical specifications Updated table: Table 41: Updated numbers for S32K148 Updated Document number for 32-pin QFN in topic Obtaining package dimensions
3	14 March 2017	 In Table 2 Updated min. value of V_{DD_OFF} Added parameter I_{INJSUM_AF} Updated Power mode transition operating behaviors Updated Power consumption Updated footnote to T_{SPLL_LOCK} in SPLL electrical specifications In 12-bit ADC electrical characteristics Updated table: 12-bit ADC characteristics (2.7 V to 3 V) (VREFH = VDDA, VREFL = VSS) Added typ. value to I_{DDA_ADC}, TUE, DNL, and INL Added min. value to SMPLTS Removed footnote 'All the parameters in this table ' Updated table: 12-bit ADC characteristics (3 V to 5.5 V) (VREFH = VDDA, VREFL = VSS) Added typ. value to I_{DDA_ADC} Removed footnote 'All the parameters in this table ' In Flash timing specifications — commands updated Max. value of t_{vfykey} to 33 µs
4	02 June 2017	 In section: Block diagram, added block diagram for S32K11x series. Updated figure: S32K1xx product series comparison. In section: Selecting orderable part number, added reference to attachement S32K_Part_Numbers.xlsx. In section: Ordering information Updated figure: Ordering information. In Table 1,

Table continues on the next page...

Table 43. Revision History (continued)

Rev. No.	Date	Substantial Changes
		 Updated note 'All the limits defined ' Updated parameter 'I_{INJPAD_DC_ABS}', 'V_{IN_DC}', I_{INJSUM_DC_ABS}. In Table 2, • Updated parameter I_{INJPAD_DC_OP} and I_{INJSUM_DC_OP}. In Table 5, updated TBDs for V_{LVR_HYST}, V_{LVD_HYST}, and v_{LVW_HYST} In Power mode transition operating behaviors, • Added VLPR → VLPS • Added VLPS → VLPR • Updated TBDs for VLPS → Asynchronous DMA Wakeup, STOP1 → Asynchronous DMA Wakeup • In Table 7, updated the specifications for S32K144. • Updated the attachment S32K1xx_Power_Modes _Configuration.xlsx. • In Table 15, removed C_{IN_A}. • In Table 15, removed C_{IN_A}. • In Table 19, • Added parameter ΔF125. • Removed I_{DDOSC} • In Table 20, • Added parameter ΔF125. • Removed I_{DDIFIRC} • In Table 21, removed I_{LPO} • Updated section: Flash memory module (FTFC) electrical specifications • In section: 12-bit ADC operating conditions, • Updated TBDs for I_{DDA_ADC} and TUE in Table 28 • Updated TBDs for I_{DDA_ADC} and TUE in Table 29 • In section: QuadSPI AC specifications, updated figure 'QuadSPI output timing (HyperRAM mode) diagram'. • In section: CMP with 8-bit DAC electrical specifications, added note 'For comparator IN signals adjacent ' • In table: Table 32, minor update in footnote 6.
5	06 Dec 2017	 In table: Table 41, updated specifications for S32K146. Removed S32K148 from 'Caution' Updated figure: S32K1xx product series comparison for 'EEPROM emulated by FlexRAM' of S32K148 (Added content to footnote) Added support for LIN protocol version 2.2 A In Absolute maximum ratings: Added note 'Unless otherwise ' Added parameter 'Added note 'T_{ramp_MCU}' Updated footnote for 'T_{ramp}' In Voltage and current operating requirements: Added footnote 'V_{DD} and V_{DDA} must be shorted ' against parameter 'V_{DD}-V_{DDA}' Updated footnote 'V_{DD} and V_{DDA} must be shorted ' In Power and ground pins Added diagrams for 32-QFN and 48-LQFP and footnote below the diagrams. Updated footnote 'V_{DD} and V_{DDA} must be shorted ' In Power mode transition operating behaviors:

Table continues on the next page...

Table 43. Revision History

Rev. No.	Date	Substantial Changes
		Added footnote 'For S32K11x – FIRC/SOSC/FIRC/LPO; For S32K14x FIRC/SOSC/FIRC/LPO/SPLL' to 'VLPS Mode: All clock sources
		disabled'
		Updated numbers for:
		VLPR → VLPS
		VLPS → VLPR
		 'RUN → Compute operation'
		 RUN → VLPS RUN → VLPR
		• In Power consumption :
		 Updated specs for S32K142, S32K144, and S32K148
		 Updated footnote 'Typical current numbers are indicative'
		 Updated footnote 'The S32K148 data'
		Removed footnote 'Above S32K148 data is preliminary targets only'
		Added new table 'Power consumption at 3.3 V'
		In General AC specifications: Updated max value and footnote of WFRST
		 Updated max value and roothole of WPRST Updated symbol for not filtered pulse to 'WNFRST', updated min value
		removed max. value, and added footnote
		Fixed naming conventions to align with DS in DC electrical specifications at
		3.3 V Range and DC electrical specifications at 5.0 V Range
		Updated specs for AC electrical specifications at 3.3 V range and AC
		electrical specifications at 5 V range
		In Device clock specifications: Undeted f to 48 for 11v
		 Updated f_{BUS} to 48 for 11x Added footnote to f_{BUS} for 14x
		In External System Oscillator frequency specifications :
		Added specs for S32K11x
		Updated 't _{dc_extal} ' for S32K14x
		 Added footnote 'Frequecies below ' to 'f_{ec_extal}' and 't_{dc_extal}'
		Splitted Flash timing specifications — commands for S32K14x and S32K11x
		Updated Flash timing specifications — commands for S32K14x In Polichility appointment
		In Reliability specifications: Added footnote 'Data retention period ' for 'tnvmretp1k' and
		'tnymretee'
		Minor update in footnote for 'nnvmwree16' 'nnvmwree256'
		In QuadSPI AC specifications :
		 Updated 'MCR[SCLKCFG[5]]' value to 0
		Updated 'Data Input Setup Time' HSRUN Internal DQS PAD Loopback
		value to 1.6
		 Updated 'Data Input Setup Time' DDR External DQS min. value to 2 Updated 'Data Input Hold Time' DDR External DQS min. value to 20
		Upadted Data input Hold Time DDA External DQS min. value to 20 Upadted figure 'QuadSPI output timing (SDR mode) diagram' and
		'QuadSPI input timing (HyperRAM mode) diagram'
		In 12-bit ADC electrical characteristics :
		Added note 'On reduced pin packages where '
		 Removed max. value of 'I_{DDA_ADC}'
		Added note 'Due to triple '
		• In 12-bit ADC operating conditions, removed parameter 'ΔV _{DDA} '
		In CMP with 8-bit DAC electrical specifications: Undated Typ, and Max, values of "Ingrand"
		 Updated Typ. and Max. values of 'I_{DDLS}' Upadted Typ. value of 't_{DHSB}'
		 Updated Typ. value of 'DHSB Updated Typ. value of 'VHYST1', 'VHYST2', and 'VHYST3'
		In LPSPI electrical specifications:
		 Updated 'f_{periph}' and 'f_{op}', and 't_{SPSCK}'

Table continues on the next page...

Revision History

Table 43. Revision History (continued)

Rev. No.	Date	Substantial Changes
		 Updated 3.3 V numbers and added footnote against f_{op}, t_{SU}, ans t_V in HSRUN Mode Added footnote to 't_{WSPSCK}' Updated Thermal characteristics for S32K11x
6	31 Jan 2018	 Changed the representation of ARM trademark throughout. Removed S32K142 from 'Caution' In 'Key features', added the following note under 'Power management', 'Memory and memory interfaces', and 'Reliability, safety and security': No write or erase access to In High-level architecture diagram for the S32K14x family, added the following footnote: No write or erase access to In High-level architecture diagram for the S32K11x family : Minor editorial update: Fixed the placement of SRAM, under 'Flash memory controller' block Updated figure: S32K1xx product series comparison : Updated footnote 1, and added against 'HSRUN' in addition to 'HW security module (CSEc)' and 'EEPROM emulated by FlexRAM'. Updated 'System RAM (including FlexRAM and MTB)' row for S32K144, S32K146, and S32K148. Updated channel count for S32K116 in row '12-bit SAR ADC (1 MSPS each)'. Updated Ordering information Updated Flash timing specifications — commands for S32K148, S32K142, S32K146, S32K116, and S32K118.
7	19 April 2018	 Changed Caution to Notes Updated the wordings of Notes and removed S32K146 Added 'Following two are the available' In 'Key features': Editorial updates Updated the note under Power management, Memory and memory interfaces, and Safety and security. Updated FlexIO under Communications interfaces Added ENET and SAI under Communications interfaces Updated Cryptographic Services Engine (CSEc) under 'Safety and security' In High-level architecture diagram for the S32K14x family: Minor editorial updates Updated note 3 In High-level architecture diagram for the S32K11x family: Minor editorial updates In figure: S32K1xx product series comparison: Editorial updates In figure: S32K1xx product series comparison: Editorial updates Updated Frequency for S32K14x Updated footnote 4 Added footnote 5 In Ordering information: Renamed section, updated the starting paragraph Updated the figure In Voltage and current operating requirements, updated the note In Power consumption: Updated specs for S32K146 Removed section 'Modes configuration', amd moved its content under the fisrt paragraph. In 12-bit ADC operating conditions:

Table continues on the next page...

Table 43. Revision History (continued)

Fixed the typo in R _{SW1} In LPSPI electrical specifications: Updated t _{Lead} and t _{Lag} Added footnote in Figure: LPSPI slave mode timing (CPHA = 0) and Figure: LPSPI slave mode timing (CPHA = 1) In Thermal characteristics: Updated the name of table: Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package Deleted specs for R _{BUC} for 32 QFN package Added 'R _{BUCBottom}	Rev. No.	Date	Substantial Changes
Updated VLPR peripherals disabled and Peripherals Enabled use case #1, using 4 Mhz for System clock, 2 Mhz for bus clock, and 1Mhz for flash. Removed S32K116 from Notes In figure: S32K1xx product series comparison: Added note 'Availability of peripherals depends on the pin availability' Updated 'Ambient Operation Temperature' row Updated 'System RAM (including FlexRAM and MTB)' row for S32K144, S32K146, and S32K148 In Ordering information: Updated figure for 'Y: Optional feature' Updated footnote 3 In Power and ground pins: In figure 'Power diagram', updated V _{Flash} frequency to 3.3 V In Power mode transition operating behaviors: Updated footnote for 'VLPS Mode: All clock sources disabled' In Power consumption:			 In LPSPI electrical specifications: Updated t_{Lead} and t_{Lag} Added footnote in Figure: LPSPI slave mode timing (CPHA = 0) and Figure: LPSPI slave mode timing (CPHA = 1) In Thermal characteristics: Updated the name of table: Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package Deleted specs for R_{BJC} for 32 QFN package
 Added VLPR Peripherals enabled use case 2 at 125 °C/Typicals Renamed VLPR Peripherals enabled to 'Peripherals enabled use case 1' Added footnote 'Data collected using RAM' to VLPR 'Peripherals disabled' and VLPR 'Peripherals enabled use case 1' Updated VLPS Peripherals enabled at 25 °C/Typicals for S32K142 and S32K144 to 40 μA and 42 μA respectively Added table 'VLPS additional use-case power consumption at typical conditions' In DC electrical specifications at 3.3 V Range: Updated naming conventions Added specs for GPIO-FAST pad In DC electrical specifications at 5.0 V Range: Updated naming conventions Added specs for GPIO-FAST pad In AC electrical specifications at 3.3 V range: Updated naming conventions Added specs for GPIO-FAST pad In AC electrical specifications at 3.3 V range: Updated naming conventions Added specs for GPIO-FAST pad In AC electrical specifications at 5 V range: Updated naming conventions Added specs for GPIO-FAST pad In AC electrical specifications at 5 V range: Updated naming conventions Added specs for GPIO-FAST pad In External System Oscillator electrical specifications: Clarified description of g_{mXOSC} Updated V_{IL} max. to 1.15 V 	8	18 June 2018	 Updated VLPR peripherals disabled and Peripherals Enabled use case #1, using 4 Mhz for System clock, 2 Mhz for bus clock, and 1Mhz for flash. Removed S32K116 from Notes In figure: S32K1xx product series comparison: Added note 'Availability of peripherals depends on the pin availability' Updated 'Ambient Operation Temperature' row Updated 'System RAM (including FlexRAM and MTB)' row for S32K144, S32K146, and S32K148 In Ordering information: Updated figure for 'Y: Optional feature' Updated footnote 3 In Power and ground pins: In figure 'Power diagram', updtaed V_{Flash} frequency to 3.3 V In Power mode transition operating behaviors: Updated footnote for 'VLPS Mode: All clock sources disabled' In Power consumption: Added IDDs for S32K116 Added VLPR Peripherals enabled use case 2 at 125 °C/Typicals Renamed VLPR 'Peripherals enabled use case 1' Added footnote 'Data collected using RAM' to VLPR 'Peripherals disabled' and VLPR 'Peripherals enabled use case 1' Updated VLPS Peripherals enabled use case 1 Updated VLPS Peripherals enabled use case 1 Updated VLPS Peripherals enabled use case power consumption at typical conditions' In DC electrical specifications at 3.3 V Range: Updated naming conventions Added specs for GPIO-FAST pad In AC electrical specifications at 5.0 V Range: Updated naming conventions Added specs for GPIO-FAST pad In AC electrical specifications at 3.3 V range: Updated naming conventions Added specs for GPIO-FAST pad In AC electrical specifications at 5.0 V range: Updated naming conventions Added specs for GPIO-FAST pad In AC electrical specifications at 5.0 V range: Updated namin

Revision History

Table 43. Revision History

Rev. No.	Date	Substantial Changes
		Updated specs for T _{JIT} Cycle-to-Cycle jitter to 300 ps In QuadSPI AC specifications: Updated specs for T _{IV} Data Output In-Valid Time
		 In figure 'QuadSPI output timing (SDR mode) diagram', marked Invalid area In CMP with 8-bit DAC electrical specifications: Removed '(VAIO)' from decription of V_{HYSTO} In LPSPI electrical specifications:
		 Added note 'Undefined' in figures 'LPSPI slave mode timing (CPHA = 0)' and 'LPSPI slave mode timing (CPHA = 1)'

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP. the NXP logo. NXP SECURE CONNECTIONS FOR A SMARTER WORLD. COOLFLUX. EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. Arm, AMBA, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2015–2018 NXP B.V.

Document Number S32K1XX Revision 8, 06/2018

