

ON Semiconductor®

FSB560 / FSB560A NPN Low-Saturation Transistor

Features

• These devices are designed with high-current gain and low-saturation voltage with collector currents up to 2 A continuous.

SuperSOTTM-3 (SOT-23)

Ordering Information

Part Number	Marking	Package	Packing Method
FSB560	560	SSOT 3L	Tape and Reel
FSB560A	560A	SSOT 3L	Tape and Reel

Absolute Maximum Ratings(1),(2)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}\text{C}$ unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{CEO}	Collector-Emitter Voltage	60	V
V_{CBO}	Collector-Base Voltage	80	V
V _{EBO}	Emitter-Base Voltage	5	V
I _C	Collector Current - Continuous	2	Α
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Notes:

- 1. These ratings are based on a maximum junction temperature of 150°C.
- 2. These are steady-state limits. ON Semiconductor should be consulted on applications involving pulsed or low-duty-cycle operations.

Thermal Characteristics(3)

Values are at $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter	Max.	Unit
P _D	Total Device Dissipation	500	mW
	Derate Above 25°C	4	mW/°C
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	250	°C/W

Note:

3. PCB size: FR-4, 76 mm x 114 mm x 1.57 mm (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size.

Electrical Characteristics

Values are at T_A = 25°C unless otherwise noted.

Symbol	Parameter	Conditions		Min.	Max.	Unit
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C = 10 mA, I _B = 0		60		V
BV _{CBO}	Collector-Base Breakdown Voltage	I _C = 100 μA, I _E = 0		80		V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_E = 100 \mu A, I_C = 0$		5		V
	Collector Cut-Off Current	V _{CB} = 30 V, I _E = 0			100	nA
I _{CBO}	Collector Cut-Off Current	V _{CB} = 30 V, I _E = 0, T _A = 100°C			10	μΑ
I _{EBO}	Emitter Cut-Off Current	V _{EB} = 4 V, I _C = 0			100	nA
	DC Current Gain ⁽⁴⁾	I _C = 100 mA, V _{CE} = 2 V		70		
h _{FE}		I _C = 500 mA, V _{CE} = 2 V	FSB560	100	300	
			FSB560A	250	550	
		I _C = 1 A, V _{CE} = 2 V		80		
		I _C = 2 A, V _{CE} = 2 V		40		
	Collector-Emitter Saturation Voltage ⁽⁴⁾	I _C = 1 A, I _B = 100 mA			300	
V _{CE} (sat)		l l _C = 2 A. l _B = 200 mA	FSB560		350	mV
			FSB560A		300	
V _{BE} (sat)	Base-Emitter Saturation Voltage ⁽⁴⁾	I _C = 1 A, I _B = 100 mA			1.25	V
V _{BE} (on)	Base-Emitter On Voltage ⁽⁴⁾	I _C = 1 A, V _{CE} = 2 V			1	V
C _{obo}	Output Capacitance	V _{CB} = 10 V, I _E = 0, f = 1.0 MHz			30	pF
f _T	Transition Frequency	I _C = 100 mA, V _{CE} = 5 V, f = 100 MHz		75		MHz

Note:

4. Pulse test: pulse width \leq 300 μ s, duty cycle \leq 2.0%

Typical Performance Characteristics

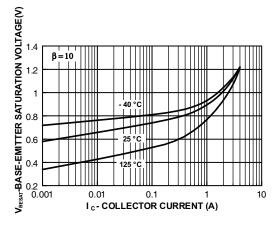


Figure 1. Base-Emitter Saturation Voltage vs. Collector Current

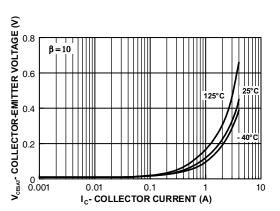


Figure 3. Collector-Emitter Saturation Voltage vs. Collector Current

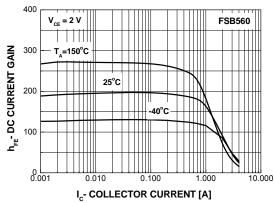


Figure 5. Current Gain vs. Collector Current

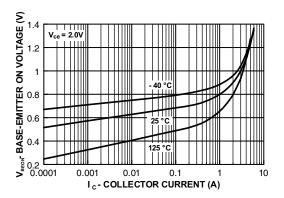


Figure 2. Base-Emitter On Voltage vs. Collector Current

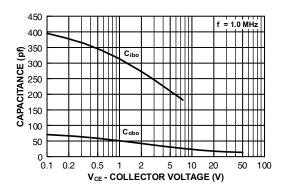


Figure 4. Input / Output Capacitance vs. Reverse Bias Voltage

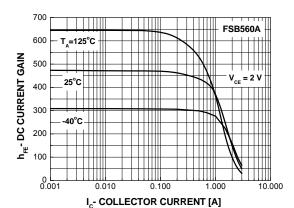


Figure 6. Current Gain vs. Collector Current

Physical Dimensions 0.95 2.92±0.12 — A 3 1.40 В 1.40±0.12 2.20 2 (0.29)--1.00→ 0.20M A B 0.95 -1.90*-*1.90 LAND PATTERN RECOMMENDATION SEE DETAIL A--1.12 MAX 0.10 (0.94)△ 0.10M C C 2.51±0.20 GAGE PLANE NOTES: UNLESS OTHERWISE SPECIFIED 0.178 0.20 NO JEDEC REFERENCE AS OF AUGUST 2003 ALL DIMENSIONS ARE IN MILLIMETERS. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS. DIMENSIONING AND TOLERANCING PER ASME Y14.5M — 1994. 0.43 0.33 **SEATING** PLANE (0.56)DETAIL A SCALE: 50:1 MA03BREVB Figure 7. MOLDED PACKAGE, SUPERSOT, 3-LEAD

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

Phone: 81-3-5817-1050

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative