2¹² Series of Decoders

Features

- Operating voltage: 2.4V~12V
- Low power and high noise immunity CMOS technology
- · Low standby current
- Capable of decoding 12 bits of information
- · Binary address setting
- Received codes are checked 3 times
- Address/Data number combination
 - HT12D: 8 address bits and 4 data bits
 HT12F: 12 address bits only

Applications

- Burglar alarm system
- Smoke and fire alarm system
- Garage door controllers
- Car door controllers

General Description

The 2^{12} decoders are a series of CMOS LSIs for remote control system applications. They are paired with Holtek's 2^{12} series of encoders (refer to the encoder/decoder cross reference table). For proper operation, a pair of encoder/decoder with the same number of addresses and data format should be chosen.

The decoders receive serial addresses and data from a programmed 2¹² series of encoders that are transmitted by a carrier using an RF or an IR transmission medium. They compare the serial input data three times continu-

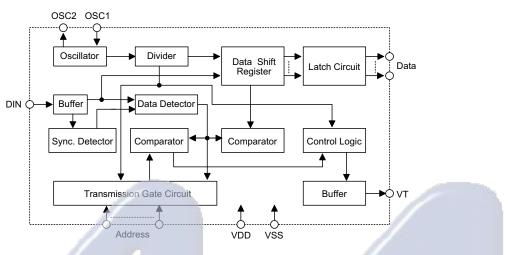
Selection T

Selection Table					Jacks		- 🥆 / e 🖉
Function	Address	Da	ata	νт	Oscillator	Trieger	Deekeese
Part No.	No.	No.	Туре	VI	Oscillator	Trigger	Package
HT12D	8	4	L	\checkmark	RC oscillator	DIN active "Hi"	18DIP, 20SOP
HT12F	12	0		\checkmark	RC oscillator	DIN active "Hi"	18DIP, 20SOP

Ĩ I - I I

Notes: Data type: L stands for latch type data output.

VT can be used as a momentary data output.


Rev. 1.10

- Built-in oscillator needs only 5% resistor
- Valid transmission indicator
- Easy interface with an RF or an infrared transmission medium
- Minimal external components
- Pair with Holtek's 2¹² series of encoders
- 18-pin DIP, 20-pin SOP package
- Car alarm system
- Security system
- Cordless telephones
- · Other remote control systems

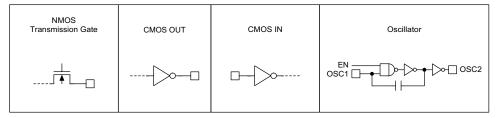
ously with their local addresses. If no error or unmatched codes are found, the input data codes are decoded and then transferred to the output pins. The VT pin also goes high to indicate a valid transmission.

The 2¹² series of decoders are capable of decoding informations that consist of N bits of address and 12–N bits of data. Of this series, the HT12D is arranged to provide 8 address bits and 4 data bits, and HT12F is used to decode 12 bits of address information.

Block Diagram

Note: The address/data pins are available in various combinations (see the address/data table).

Pin Assignment


8-Addre 4-Data	ss	8-Address 4-Data		12-Address 0-Data		12-Address 0-Data		
_			20 🗆 NC				20 🗆 NC	
A0 🗖 1		A0 🗖 2		A0 1		A0 2		
A1 🗖 2	17 🗖 VT	A1 🗖 3	18 🗆 VT	A1 C 2	17 🗆 VT	A1 🗖 3	18 🗆 VT	
A2 🗖 3	16 🗆 OSC1	A2 🗖 4	17 OSC1	A2 🗖 3	16 OSC1	A2 🗖 4	17 🗆 OSC1	
A3 🗖 4	15 🗆 OSC2	A3 🗖 5	16 OSC2	A3 🗖 4	15 🗆 OSC2	A3 🗖 5	16 🗆 OSC2	
A4 🗆 5	14 🗖 DIN	A4 🗖 6	15 🗆 DIN	A4 🗖 5	14 🗆 DIN	A4 🗖 6	15 D DIN	
A5 🗆 6	13 D11	A5 🗖 7	14 🗆 D11	A5 🗖 6	13 🗆 A11	A5 🗖 7	14 🗆 A11	
A6 🗖 7	12 D10	A6 🗖 8	13 🗆 D10	A6 🗖 7	12 🗆 A10	A6 🗆 8	13 🗖 A10	
A7 🗆 8	11 🗖 D9	A7 🗖 9	12 🗆 D9	A7 🗌 8	11 🗆 A9	A7 🗖 9	12 🗖 A9	134
VSS 🗖 9	10 🗖 D8	VSS 🗖 10	11 🗖 D8	VSS 🗌 9	10 🗆 A8	VSS 🗖 10	11 🗖 A8	
	IT12D 8 DIP-A	HT12 - 20 SC		HT12 - 18 DI		HT12 - 20 SC		7
Pin Des	cription			1.7	Lø (-

Pin Name	I/O	Internal Connection	Description
A0~A11 (HT12F)	1	NMOS	Input pins for address A0~A11 setting These pins can be externally set to VSS or left open.
A0~A7 (HT12D)	I	Transmission Gate	Input pins for address A0~A7 setting These pins can be externally set to VSS or left open.
D8~D11 (HT12D)	0	CMOS OUT	Output data pins, power-on state is low.
DIN	Ι	CMOS IN	Serial data input pin
VT	0	CMOS OUT	Valid transmission, active high
OSC1	Ι	Oscillator	Oscillator input pin
OSC2	0	Oscillator	Oscillator output pin
VSS	_		Negative power supply, ground
VDD			Positive power supply

Rev. 1.10

Ta=25°C

Approximate internal connection circuits

Absolute Maximum Ratings

Supply Voltage	–0.3V to 13V	Storage Temperature	–50°C to 125°C
Input Voltage	V _{SS} -0.3 to V _{DD} +0.3V	Operating Temperature	20°C to 75°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Electrical Characteristics

		14 20 0						
Symbol	Parameter	Test Conditions		Min.	Tur	Max.	Unit	
Symbol	Parameter		V _{DD} Conditions		Тур.	Wax.	Unit	
V _{DD}	Operating Voltage		4	2.4	5	12	V	
	Charalter Comment	5V	Onsillation	_	0.1	1	μΑ	
ISTB	Standby Current	12V	12V Oscillator stops	_	2	4	μΑ	
IDD	Operating Current	5V	No load, f _{OSC} =150kHz		200	400	μΑ	
	Data Output Source Current (D8~D11)	5V	V _{OH} =4.5V	-1	-1.6		mA	
10	Data Output Sink Current (D8~D11)	5V	V _{OL} =0.5V	1	1.6	—	mA	l
	VT Output Source Current	5V	V _{OH} =4.5V	-1	-1.6	_	mA	
I VT	VT Output Sink Current		V _{OL} =0.5V	1	1.6		mA	1
VIH	"H" Input Voltage		S-A-	3.5	P	5	V	
VIL	"L" Input Voltage	5V	V_2 47 164	0	-	1	V	1
fosc	Oscillator Frequency	5V	R _{OSC} =51kΩ	_	150		kHz	

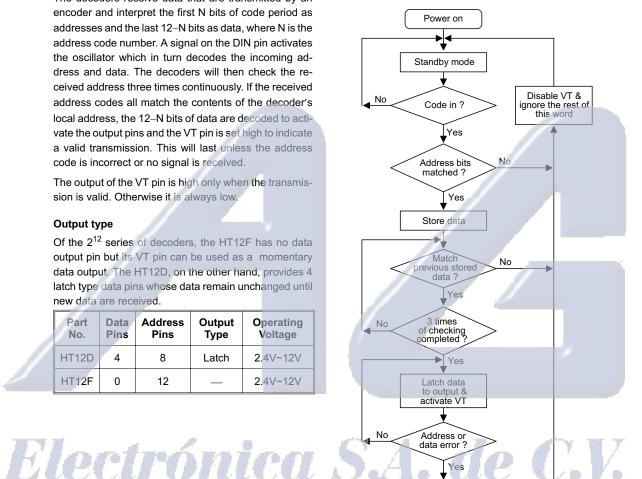
Functional Description

Operation

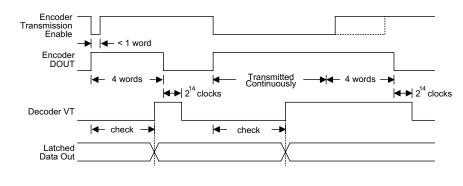
The 2¹² series of decoders provides various combinations of addresses and data pins in different packages so as to pair with the 2¹² series of encoders.

The decoders receive data that are transmitted by an encoder and interpret the first N bits of code period as addresses and the last 12-N bits as data, where N is the address code number. A signal on the DIN pin activates the oscillator which in turn decodes the incoming address and data. The decoders will then check the received address three times continuously. If the received address codes all match the contents of the decoder's local address, the 12-N bits of data are decoded to activate the output pins and the VT pin is set high to indicate a valid transmission. This will last unless the address code is incorrect or no signal is received.

The output of the VT pin is high only when the transmission is valid. Otherwise it is always low.


Output type

Of the 2¹² series of decoders, the HT12F has no data output pin but its VT pin can be used as a momentary data output. The HT12D, on the other hand, provides 4 latch type data pins whose data remain unchanged until new data are received.

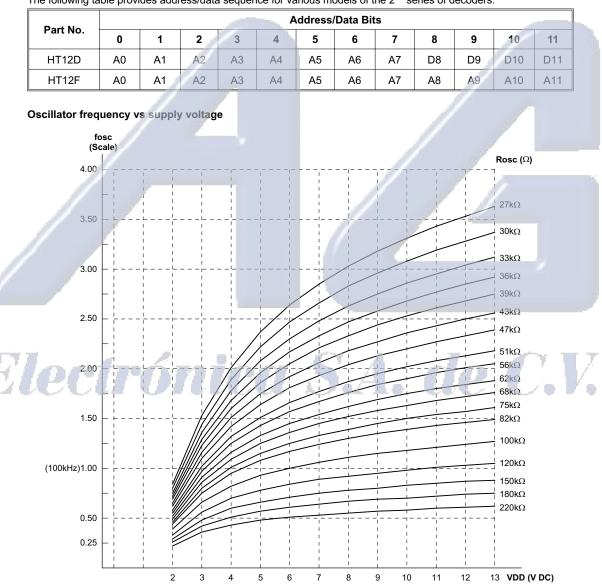

	Part No.	Data Pins	Address Pins	Output Type		perating /oltage
1	HT12D	4	8	Latch	2.	4V~12V
	HT12F	0	12		2.	4V~12V

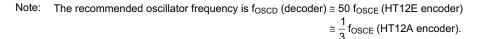
Flowchart

The oscillator is disabled in the standby state and activated when a logic "high" signal applies to the DIN pin. That is to say, the DIN should be kept low if there is no signal input.

Decoder timing

Rev. 1.10


4

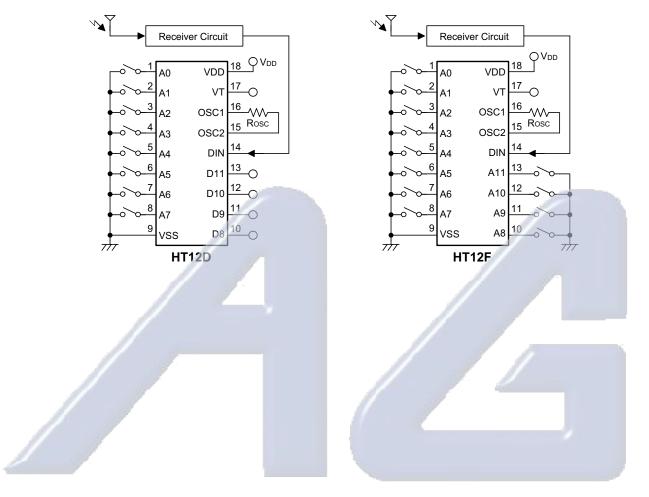

Encoder/Decoder cross reference table

						Pacl	age			
Decoders Part No.	Data Pins	Address Pins	VT	Pair Encoder	Enc	oder	Dec	oder		
					DIP	SOP	DIP	SOP		
HT12D	4	8	\checkmark	HT12A HT12E	18	20	18	20		
HT12F	0	12	\checkmark	HT12A HT12E	18	20	18	20		

Address/Data sequence

The following table provides address/data sequence for various models of the 2¹² series of decoders.

Rev. 1.10

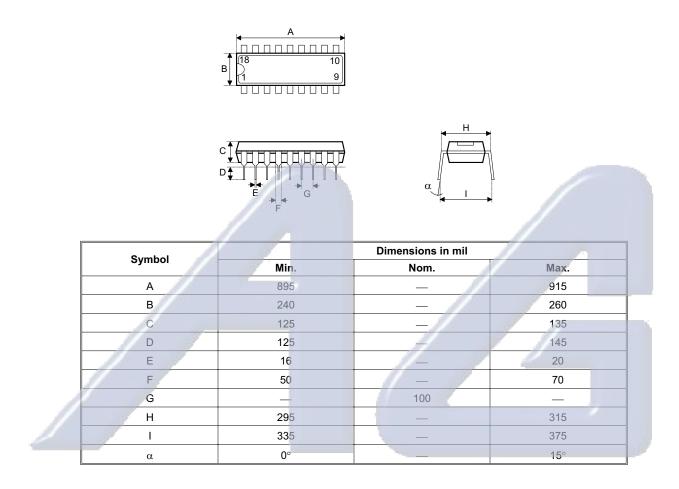

5

November 18, 2002

www.agelectronica.com

www.agelectronica.com

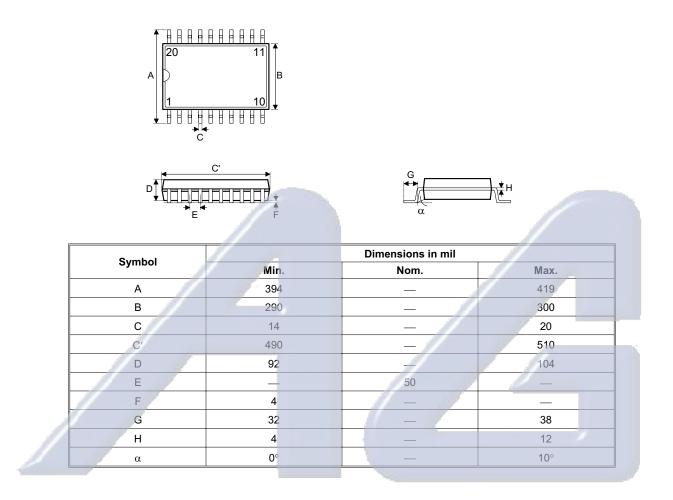
Application Circuits



Electrónica S.A. de C.V.

6

Package Information


18-pin DIP (300mil) outline dimensions

Electrónica S.A. de C.V.

7

20-pin SOP (300mil) outline dimensions

Electrónica S.A. de C.V.

8

Product Tape and Reel Specifications

Reel dimensions

SO	A A P 20W		
	Symbol	Description	Dimensions in mm
	А	Reel Outer Diameter	330±1.0
	В	Reel Inner Diameter	62±1.5
	с	Spindle Hole Diameter	13.0+0.5
			-0.2
	D	Key Slit Width	2.0±0.5
Ek	Т1 	Space Between Flange Reel Thickness	24.8+0.3 -0.2 30.2±0.2

Rev. 1.10

Carrier tape dimensions

F 		
Symbol	Description	Dimensions in mm
W	Carrier Tape Width	24.0+0.3 _0.1
Р	Cavity Pitch	12.0±0.1
E	Perforation Position	1.75±0.1
F	Cavity to Perforation (Width Direction)	11.5±0.1
D	Perforation Diameter	1.5+0.1
D1	Cavity Hole Diameter	1.5+0.25
PO	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.0±0.1
A0	Cavity Length	10.8±0.1
В0	Cavity Width	13.3±0.1
К0	Cavity Depth	3.2±0.1
Blec	Carrier Tape Thickness Cover Tape Width	0.3±0.05