ID-70 MK3

MANUAL

RFID Long Range Reader

ID Innovations

Advanced Digital Reader Technology

----Better by Design

Manual Rev 06 – (31st March 2003)

ID Innovations Advanced Digital Reader TechnologyBetter by Design	ID-70 Manual	Manual # ID70MK3-310303-GP
---	--------------	----------------------------

PRODUCT DESCRIPTION

Introduction

The ID-70 is an advanced reader for the popular EM4001 format 125KHz tags. Read ranges of over 100 cm are possible with our Long Range Cards. Advanced features include auto-tuning and DSP capabilities to increase read range and to reduce unwanted vibration and interference. The ID-70MK3 also features RS232. Wiegand26, Wiegand34, Wiegand42, Magnetic ABA Track2 10digit and Magnetic ABA Track2 14digit output formats. Furthermore, the reader is encapsulated for environmental protection. The ID-70Mk3 has special anti-interference software and is particularly suitable for applications such as car parks where readers are required to operate close to each with little or no degradation in performance.

Features

- Very Long Read Range
- Through-wall and hands free applications
- Auto-Tuning
- Strong Water Resistant Enclosure
- Readers can operate 150cm apart New
- Six Output Formats New
- Large Beeper New

DSP (Digital Signal Processing) is used to provide superior range and reduce vibration and electrical noise effects. These effects are not eliminated so care should still be taken to position the equipment away from sources of electrical noise and vibration.

Temperature changes can affect accuracy of the antenna tuning. The ID-70 is equipped with a sophisticated self-tune facility or auto-tune. The reader performs an auto-tune shortly after power-up.

Installation

Position the ID-70 away from sources of interference such as main wiring. Do not fix the reader antenna on solid steel objects or range loss will occur and the auto-tuning may even run out of range. Moderate metal fixtures are acceptable. Computer monitors used in DOS mode can result in powerful interference especially when older monitors are used. Vibration can also cause loss of range.

If possible use a 1amp regulated linear Power Supply. Switching regulators can sometimes produce powerful interference and reduce readrange.

Description

Especifications onica S.A. de C.V.

Table 1. ID-70 Operational & Physical Characteristics

Parameter	Conditions
Power Requirements	12V DC
Current Consumption	0.2 Amperes nominal
Frequency	125 KHz
Read Range	Over 70 cm with ISO cards
Interfaces	RS232 (9600, n, 8, 1) and Wiegand26/34
Transponder	Read-only 64 bits, Manchester encoded
Auto-tune	Internal upon switch-on and every 10 minutes
Read Indication	LED and Beeper
Dimensions	230mm x 230mm x 35mm
Nominal Weight	1.2 Kg

DATA **F**ORMATS

Output Data Structure – ASCII

STX (02h)	DATA (10 ASCII)	CHECK SUM (2 ASCII)	CR	LF	ETX (03h)

[The 1byte (2 ASCII characters) Check sum is the arithmetic addition of the 5 hex bytes (10 ASCII) Data characters.]

Output Data Structure – Wiegand26 (P = Parity start bit and stop bit)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
P	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	O	O	O	O	O	О	О	О	О	О	О	О	P
Even parity (E)												C	Odd 1	parit	y (C))				Į.					

Output Data Structure – Wiegand34 (P = Parity start bit and stop bit)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
P	Е	E	Е	Е	Е	E	E	Е	Е	Е	Е	Ε	Е	E	Е	E	O	0	0	0	О	О	О	О	O	О	О	О	О	О	О	O	P
	Even parity (E)															Oc	ld p	ari	ty ((O)													

Output Data Magnetic ABA Track2 10Decimal Characters

10 Leading Zeros	SS D	ata (10Ascii Cha	ar) ES	LCR	10 Ending Zeros	

[SS is the Start Character of 11010, ES is the end character of 11111, LRC is the Longitudinal Redundancy Check.]

Output Data Magnetic ABA Track2 14Decimal Characters

10 Leading Zeros SS Data (14Ascii Char) ES LCR 10 Ending Zeros	ding Zeros
--	------------

[SS is the Start Character of 11010, ES is the end character of 11111, LRC is the Longitudinal Redundancy Check.]

Report Format

Upon switch-on the reader sends a report via the RS232 line. The report indicates the Software Revision and the Tuning Variable. A typical report will be as follows (hex values):

ŀ	(laba	· 1104)	BILL	11	/ 414	
L	Day	Month	Year	Revision #	Tune Variable	Arithmetic Checksum
	01	01	01	08	04	1F

The Tune Variable indicates the Tuning Capacity. A figure between 01h-0Dh is OK. A figure outside this range can be caused by environmental demands, possibly due to fixing directly onto sheet steel.

Cable Signal Definitions

Wire color	Signal	Description
Red	PWR	+12V DC input
Black	GND	Ground
Yellow	Program1	Program line1 (format selector)
Violet	Program2	Program line2 (format selector)
Grey	ı	Used to Select Magnetic Emulation
Green	Data 1	Wiegand data 1, Magnetic ABA clock *
Brown	Data 0	Wiegand data 0, Magnetic ABA data *
White	СР	Card Present
Blue	RS232	Serial RS232 output (9600, n, 8, 1)
Orange	-	Not Connected
Screen	GND	Earth Screen

www.agelectronica.com www.agelectronica.com

^{*} In Wiegand Mode add 1.5k pull-up resistors for Data0 and Data1 signals. In Magnetic Mode add 1.5K pull-ups to Data, Clock and Card Present

Table 3. Output Format Programming

Output Format	Programming
RS232	Connect PRGM (Yellow wire) to RS232 (Blue wire)
Wiegand26	Connect Yellow wire to Black wire : Connect Violet to Black wire
Wiegand34	Connect Yellow wire Red wire
*Wiegand42	Connect Yellow wire to Black wire : Connect Violet to Red wire
Magnetic ABA Track2 10 digit	Connect Yellow wire to Grey wire : Connect Violet to Red wire
Magnetic ABA Track2 14 digit	Connect Yellow wire to Grey wire: Connect Violet to Back wire

^{*}Wiegand42 models only available to special order.

Calculation of ASCII Check sum.

Suppose a card ID = 12, 34, 56, 78, 90 Adding in hex gives:-

12

34

Thus 2+4+6+8 = 14(20 decimal). The 1 is carried. The 4 is the low sum.

78 and 1+3+5+7+9+ carry(+1) = 1A(26 decimal). The 1 is discarded. The **A** is

90 the high sum. This gives **A4**.

A4

Electrónica S.A. de C.V.

Specifications subject to change. ID Innovations reserves the right to change its products and the specifications given here at any time without notice.

ID Innovations

Advanced Digital Reader Technology

----Better by Design