

CIPOS™ Micro IPM 600V/6A

IM231-L6S1B / IM231-L6T2B

Description

IM231-L6-series 3-phase Intelligent Power Modules (IPM) are designed for high-efficiency appliance motor drives such as air-conditioner fans and refrigerator compressors. These advanced IPMs, available in both surface mount and through-hole configurations, offer a combination of low $V_{CE(sat)}$ TRENCHSTOPTM IGBT6 technology and the industry benchmark rugged half-bridge drivers. The IPMs have several protection features including precise overcurrent protection and temperature feedback.

Features

- 600V 3-phase inverter including gate drivers & bootstrap function
- Low V_{CE(sat)} TRENCHSTOP™ IGBT6
- Temperature monitor
- Accurate overcurrent shutdown (±5%)
- Fault reporting and programmable fault clear
- Advanced input filter with shoot-through protection
- Optimized dV/dt for loss and EMI trade offs
- Open-emitter for single and leg-shunt current sensing
- 3.3V logic compatible
- Isolation 2000VRMS, 1min

SOP 29x12 DIP 29x12

Potential Applications

- · Air-conditioner fans
- Refrigerator compressors
- Ventilation fans & blower fans
- Low power motor drives

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Table 1 Part Ordering Table

	•			
Base Part Number	Doolsono Turno	Standard Pack	(Oudenable Boot Number
	Package Type	Form	Quantity	Orderable Part Number
IM231-L6T2B	DIP 29x12	Tube	240	IM231L6T2BAKMA1
IM231-L6S1B	SOP 29x12	Tube	240	IM231L6S1BALMA1
IM231-L6S1B	SOP 29x12	Tape & Reel	500	IM231L6S1BAUMA1

IM231-L6S1B / IM231-L6T2B

Table of contents

Table of contents

Description1

Features 1

Potenti	ial Applications	
Product	t validation	
Table of	of contents	
1	Internal Electrical Schematic	
2	Pin Configuration	
2.1	Pin Assignment	
2.2	Pin Descriptions	
3	Absolute Maximum Rating	
3.1	Module	
3.2	Inverter	
3.3	Control	
4	Thermal Characteristics	8
5	Recommended Operating Conditions	
6	Static Parameters	10
6.1	Inverter	10
6.2	Control	10
7	Dynamic Parameters	12
7.1	Inverter	12
7.2	Control	12
8	Thermistor Characteristics	13
9	Mechanical Characteristics and Ratings	14
10	Qualification Information	15
11	Diagrams & Tables	16
11.1	T _c Measurement Point	16
11.2	Backside Curvature Measurement Points	16
11.3	Input-Output Logic Table	
11.4	Switching Time Definitions	18
12	Application Guide	
12.1	Typical Application Schematic	
12.2	T _J vs T _{TH}	
12.3	–V _s Immunity	
13	Package Outline	
13.1	DIP 29x12	
13.2	SOP 29x12	
14	Revision History	23

Internal Electrical Schematic

1 Internal Electrical Schematic

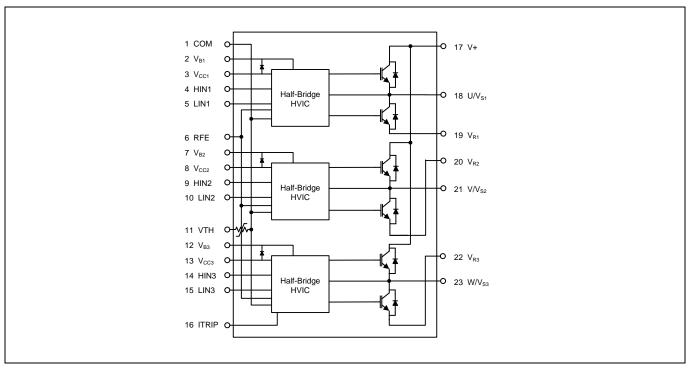


Figure 1 Internal electrical schematic.

Pin Configuration

2 Pin Configuration

2.1 Pin Assignment

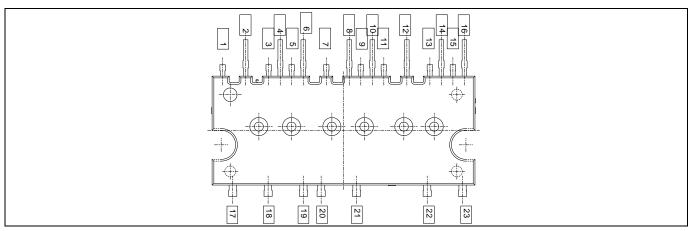


Figure 2 Module pinout

Table 2 Pin Assignment

'	6
Name	Description
СОМ	Logic ground
V _{B1}	High side floating supply voltage 1
V _{DD1}	Low side control supply 1
HIN1	Logic Input for high side gate driver - Phase 1
LIN1	Logic Input for low side gate driver - Phase 1
RFE	RCIN / Fault / Enable
V _{B2}	High side floating supply voltage 2
V_{DD2}	Low side control supply 2
HIN2	Logic input for high side gate driver - Phase 2
LIN2	Logic input for low side gate driver - Phase 2
VTH	Thermistor output
V _{B3}	High side floating supply voltage 3
V_{DD3}	Low side control supply 3
HIN3	Logic Input for high side gate driver - Phase 3
LIN3	Logic Input for low side gate driver - Phase 3
ITRIP	Current protection pin
V+	Dc bus voltage positive
U/V _{S1}	Output - phase 1, high side floating supply offset 1
V_{R1}	Phase 1 low side emitter
V_{R2}	Phase 2 low side emitter
V/V _{S2}	Output - phase 2, high side floating supply offset 2
V_{R3}	Phase 3 low side emitter
W/V _{S3}	Output – phase 3, high side floating suppyl offset 3
	COM V _{B1} V _{DD1} HIN1 LIN1 RFE V _{B2} V _{DD2} HIN2 LIN2 VTH V _{B3} V _{DD3} HIN3 LIN3 ITRIP V+ U/V _{S1} V _{R1} V _{R2} V/V _{S2} V _{R3}

IM231-L6S1B / IM231-L6T2B

Pin Configuration

2.2 Pin Descriptions

HIN(1,2,3) and LIN(1,2,3) (Low side and high side control pins)

These pins are positive logic and they are responsible for the control of the integrated IGBT. The Schmitt-trigger input thresholds of them are such to guarantee LSTTL and CMOS compatibility down to 3.3V controller outputs. Pull-down resistor of about $800k\Omega$ is internally provided to pre-bias inputs during supply start-up and an ESD diode is provided for pin protection purposes. Input Schmitt-trigger and noise filter provide beneficial noise rejection to short input pulses.

The noise filter suppresses control pulses which are below the filter time T_{FILIN} . The filter acts according to Figure 4.

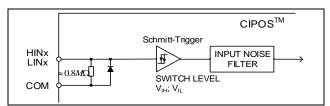


Figure 3 Input pin structure

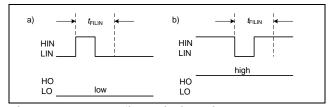


Figure 4 Input filter timing diagram

The integrated gate drive provides additionally a shoot through prevention capability which avoids the simultaneous on-state of the high-side and low-side switch of the same inverter phase. A minimum deadtime insertion of typically 300ns is also provided by driver IC, in order to reduce cross-conduction of the external power switches.

V_{DD}, COM (Low side control supply and reference)

 V_{DD} is the control supply and it provides power both to input logic and to the output power stage. Input logic is referenced to COM ground.

The under-voltage circuit enables the device to operate at power on when a supply voltage of at least a typical voltage of $V_{\text{DDUV+}} = 11.1V$ is present.

The IC shuts down all the gate drivers power outputs, when the V_{DD} supply voltage is below V_{DDUV} = 10.9V. This prevents the external power switches from critically low gate voltage levels during onstate and therefore from excessive power dissipation.

$V_{B(1,2,3)}$ and $V_{S(1,2,3)}$ (High side supplies)

 V_B to V_S is the high side supply voltage. The high side circuit can float with respect to COM following the external high side power device emitter voltage.

Due to the low power consumption, the floating driver stage is supplied by integrated bootstrap circuit.

The under-voltage detection operates with a rising supply threshold of typical $V_{BSUV+} = 11.1V$ and a falling threshold of $V_{BSUV-} = 10.9V$.

 $V_{S(1,2,3)}$ provide a high robustness against negative voltage in respect of COM. This ensures very stable designs even under rough conditions.

V_{R(1,2,3)} (Low side emitters)

The low side emitters are available for current measurements of each phase leg. It is recommended to keep the connection to pin COM as short as possible in order to avoid unnecessary inductive voltage drops.

VTH (Thermistor output)

A UL certified NTC resistor is integrated in the module with one terminal of the chip connected to COM and the other to VTH. When pulled up to a rail voltage such as V_{DD} or 3.3V by a resistor, the VTH pin provides an analog voltage signal corresponding to the temperature of the thermistor.

RFE (RCIN / Fault / Enable)

The RFE pin combines 3 functions in one pin: RCIN or RC-network based programmable fault clear timer, fault output and enable input.

The RFE pin is normally connected to an RC network on the PCB per the schematic in Figure 5. Under normal operating conditions, R_{RCIN} pulls the RFE pin to 3.3V, thus enabling all the functions in the IPM. The microcontroller can pull this pin low to disable the IPM functionality. This is is the Enable function.

IM231-L6S1B / IM231-L6T2B

Pin Configuration

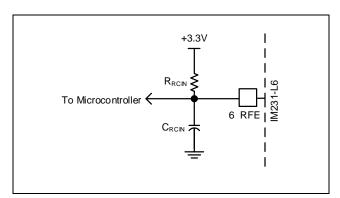


Figure 5 Typical PCB circuit connected to the RFE pin

The Fault function allows the IPM to report a Fault condition to the microncontroller by pulling the RFE pin low in one of two situations. The first is an undervoltage condition on V_{DD} and the second is when the ITRIP pin sees a voltage rising above $V_{IT,TH+}$.

The programmable fault clear timer function provides a means of automatically re-enabling the module operation a preset amount of time (T_{FLT-CLR}) after the fault condition has disappeared. Figure 6 shows the RFE-related circuit block diagram inside the IPM.

The length of TFLT-CLR can be determined by using the formula below.

$$V_{RFE}(t) = 3.3V * (1 - e^{-t/RC})$$

$$T_{FLT-CLR} = -R_{RCIN} * C_{RCIN} * ln(1-V_{IN,TH+}/3.3V)$$

For example, if R_{RCIN} is 1.2M Ω and C_{RCIN} is 1nF, the $T_{FLT-CLR}$ is about 1.7ms with $V_{IN,TH+}$ of 2.5V. It is also important to note that C_{RCIN} needs to be minimized in order to make sure it is fully discharged in case of over current event.

Since the ITRIP pin has a 500ns input filter, it is appropriate to ensure that C_{RCIN} will be discharged below $V_{IN,TH}$. by the open-drain MOSFET, after 350ns. Therefore, the max C_{RCIN} can be calculated as:

$$V_{RFE}(t) = 3.3V * e^{-t/RC} < V_{IN,TH-}$$

$$C_{RCIN} < 500 \text{ns} / (-\ln (V_{IN,TH-} / 3.3V) * R_{RFE_ON})$$

Consider $V_{\text{IN,TH-}}$ of 0.8V and $R_{\text{RFE_ON}}$ of 50ohm, C_{RCIN} should be less than 7nF. It is also suggested to use a R_{RCIN} of between 0.5M Ω and 2M Ω .

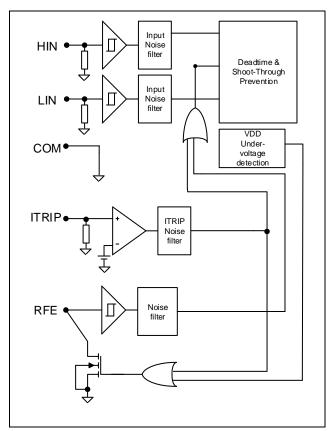


Figure 6 RFE internal circuit structure

U/V_{s1} , V/V_{s2} , W/V_{s3} (High side emitter and low side collector)

These pins are motor U, V, W input pins.

V+ (Positive bus input voltage, Pin 23)

The high side IGBTs are connected to the bus voltage. It is noted that the bus voltage should not exceed 450V.

IM231-L6S1B / IM231-L6T2B

Absolute Maximum Rating

3 Absolute Maximum Rating

3.1 Module

Table 3

Parameter	Symbol	Condition		Units	
Storage temperature	T _{STG}		-40 ~ 150	°C	
Operating case temperature	T _C		-40 ~ 125	°C	
Operating junction temperature	TJ		-40 ~ 150	°C	
Isolation test voltage	V _{ISO}	1min, RMS, f = 60Hz	2000	V	

3.2 Inverter

Table 4

Parameter	Symbol	Condition		Units
Max. blocking voltage	V_{CES}/V_{RRM}		600	V
Output current	Io	T _C = 25°C	6	Α
Peak output current	I _{OP}	$T_c = 25$ °C, $t_p < 1$ ms	9	Α
Peak power dissipation per IGBT	P _{tot}	T _C = 25°C	10.5	W
Short circuit withstand time	T _{sc}	V _{DC} = 360V, T _J = 150°C, V _{DD} = 15V Allowed number of short circuits: <1000, time between short circuits: >1s	3	μs

3.3 Control

Parameter	Symbol	Condition		Units
Low side control supply voltage	V_{DD}		-0.3 ~ 20	V
Input voltage	V _{IN}	LIN, HIN,ITRIP,RFE	-0.3 ~ V _{DD}	V
High side floating supply voltage (V _B reference to V _s)	V _{BS}		-0.3 ~ 20	V

IM231-L6S1B / IM231-L6T2B

Thermal Characteristics

4 Thermal Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Junction-case thermal resistance, all IGBTs operating (per module)	R _{TH(J-C)_M}		-	2.4	2.8	°C/W
Junction-case thermal resistance, all diodes operating (per module)	R _{TH(J-C)D_M}		-	2.5	2.9	°C/W
Single IGBT thermal resistance, junction-case	R _{TH(J-C)}	High side V-phase IGBT	-	8.4	9.6	°C/W
Single diode thermal resistance, junction-case	R _{TH(J-C)D}	High side V-phase diode	-	9.3	10.8	°C/W

IM231-L6S1B / IM231-L6T2B

Recommended Operating **Conditions**

5 Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Units
Positive DC bus input voltage	V+	-	-	450	V
Low side control supply voltage	V_{DD}	13.5	-	16.5	V
High side floating supply voltage	V_{BS}	12.5	-	17.5	V
Input voltage (LIN,HIN,ITRIP,RFE)	V _{IN}	0	-	5	V
PWM carrier frequency	F _{PWM}	-	20	-	kHz
External dead time between HIN & LIN	DT	1	-	-	μs
Voltage between COM and V _{R(1,2,3)}	V_{COMR}	-5	-	5	V
Minimum input pulse width	PW _{IN(ON)} , PW _{IN(OFF)}	1	-	-	μs

IM231-L6S1B / IM231-L6T2B

Static Parameters

6 Static Parameters

6.1 Inverter

 $(V_{DD}\text{-COM}) = (V_B - V_S) = 15 \text{ V}. \ T_C = 25 ^{\circ}\text{C} \text{ unless otherwise specified.}$

Table 8

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Collector-to-emitter	$V_{CE(sat)}$	I _C = 1A	-	1.2	-	V
saturation voltage		I _C = 3A	-	1.65	2.0	V
		I _C = 3A, T _J = 150°C	-	1.8	-	V
Collector emitter leakage	I _{CES}	$V_{IN} = 0V, V+ = 600V$	-	-	80	μΑ
current		V _{IN} = 0V, V+ = 600V, T _J = 150°C	-	24	-	μΑ
Diode forward voltage	V_{F}	I _C = 1A	-	1.2	-	V
		I _C = 3A	-	1.6	2.0	V
		$I_C = 3A, T_J = 150^{\circ}C$	-	1.5	-	V

6.2 Control

 $(V_{DD}\text{-COM}) = (V_B - V_S) = 15 \text{ V}. \ T_C = 25^{\circ}\text{C}$ unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to COM and are applicable to all six channels. The V_{DDUV} parameters are referenced to COM. The V_{BSUV} parameters are referenced to VS.

Table 9

Parameter	Symbol	Min.	Тур.	Max.	Units
Logic "1" input voltage (LIN, HIN)	V_{IN,TH^+}	2.2	-	-	V
Logic "0" input voltage (LIN, HIN)	V _{IN,TH-}	-	-	0.8	V
V _{DD} /V _{BS} supply undervoltage, positive going threshold	V _{DD,UV+} , V _{BS,UV+}	9.6	10.4	11.2	V
V _{DD} /V _{BS} supply undervoltage, negative going threshold	$V_{DD,UV-}$, $V_{BS,UV-}$	8.6	9.4	10.2	V
V _{DD} /V _{BS} supply undervoltage lock-out hysteresis	V _{DDUVH} , V _{BSUVH}	-	1.0	-	V
RFE positive going threshold	V_{RFE^+}	-	1.9	2.2	V
RFE negative going threshold	V_{RFE}	0.8	1.1	-	V
ITRIP positive going threshold	V _{IT,TH+}	0.475	0.500	0.525	V
ITRIP negative going threshold	V _{IT,TH} -	-	0.430	-	V
ITRIP input hysteresis	V _{IT,HYS}	-	0.07	-	V
Quiescent V _{BS} supply current	I _{QBS}	-	-	70	μΑ
Quiescent V _{DD} supply current per channel	I _{QDD}	-	-	2.6	mA
Input bias current V _{IN} =5V for LIN, HIN	I _{IN+}	-	6.25	12.5	μΑ
Input bias current V _{IN} =5V for RFE	I _{IN,RFE+}	-	-	1	μΑ

IM231-L6S1B / IM231-L6T2B

Static Parameters

Parameter	Symbol	Min.	Тур.	Max.	Units
Input bias current V _{IN} =5V for ITRIP	I _{ITRIP+}	-	5	20	μΑ
Bootstrap resistance	R _{BS}	-	200	-	Ω
RFE low on resistance	R _{RFE}	-	34	60	Ω

Dynamic Parameters

7 Dynamic Parameters

7.1 Inverter

 $(V_{DD}\text{-COM}) = (V_B - V_S) = 15 \text{ V. } T_C = 25^{\circ}\text{C}$ unless otherwise specified.

Table 10

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input to output turn-on propagation delay	T _{ON}		-	641	-	ns
Turn-on rise time	T_R	$I_c = 3A, V = 300V$	-	37	-	ns
Turn-on switching time	T _{C(on)}		-	135	-	ns
Input to output turn-off propagation delay	T _{OFF}		-	895	-	ns
Turn-off fall time	T_F	$I_c = 3A, V + = 300V$	-	80	-	ns
Turn-off switching time	T _{C(off)}		-	82	-	ns
RFE low to six switch turn-off propagation delay	T _{EN}	V_{IN} =0 or V_{IN} =5V, V_{RFE} =5V	-	520	-	ns
ITRIP to six switch turn-off propagation delay	T _{ITRIP}	V+ = 300V,no cap on RFE	-	1.3	-	μs
Turn-on switching energy	E _{ON}	$I_C = 3A, V = 300V,$	-	86	-	
Turn-off switching energy	E _{OFF}	$V_{DD} = 15V, L = 5mH$	-	31	-	μJ
Diode reverse recovery energy	E _{REC}		-	20	-	
Diode reverse recovery time	T_RR		-	153	-	ns
Turn-on switching energy	E _{on}	$I_C = 3A, V = 300V,$	-	129	-	
Turn-off switching energy	E _{OFF}	$V_{DD} = 15V, L = 5mH$	-	50	-	μJ
Diode reverse recovery energy	E _{REC}	$T_J = 150$ °C	-	51	-	
Diode reverse recovery time	T_RR		-	211	-	ns

7.2 Control

 $(V_{DD}\text{-COM}) = (V_B - V_S) = 15V$. $T_C = 25$ °C unless otherwise specified.

Table 11

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input filter time (HIN, LIN)	T _{FIL,IN}	$V_{IN} = 0$ or $V_{IN} = 5V$	-	300	-	ns
Input filter time (ITRIP)	T _{FIL,ITRIP}	V _{IN} =0 or V _{IN} =5V	-	500	-	ns
Internal dead time	DT _{IC}	$V_{IN} = 0$ or $V_{IN} = 5V$	-	300	-	ns
Matching propagation delay time (on and off) for same phase high-side and low-side	M _T	External dead time > 500ns	-	-	50	ns

Thermistor Characteristics

8 Thermistor Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Resistance	R ₂₅	$T_c = 25$ °C, ± 5 % tolerance	44.65	47	49.35	kΩ
Resistance	R ₁₂₅	T _C = 125°C	1.27	1.39	1.51	kΩ
B-constant (25/100)	В	±1% tolerance	-	4006	-	K
Temperature Range			-20	-	150	°C

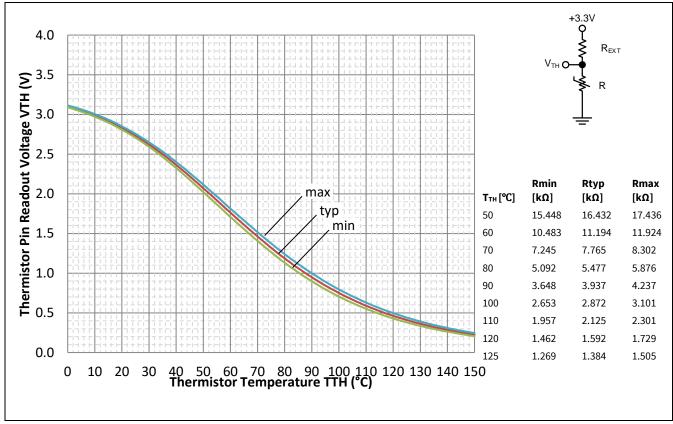


Figure 7 Thermistor resistance – temperature curve, for R_{EXT} =9.76k Ω , and thermistor resistance variation with temperature.

IM231-L6S1B / IM231-L6T2B

Mechanical Characteristics and Ratings

9 Mechanical Characteristics and Ratings

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Comparative Tracking Index	СТІ		550	-	-	V
Curvature of module backside	ВС	See Figure 9	-50	-	50	μm
Mounting Torque		M3 screw & washer, thermal grease	0.4	0.8	1.2	Nm
	Т	M3 screw & washer, SIL-PAD 1500ST	-	0.6	1.0	Nm
Weight	W		-	3.0	-	g

IM231-L6S1B / IM231-L6T2B

Qualification Information

10 Qualification Information

UL Certification	File number E252584
Moisture sensitivity level (SOP 29 x 12 only)	MSL3
RoHS Compliant	Yes

Diagrams & **Tables**

11 Diagrams & Tables

11.1 T_c Measurement Point

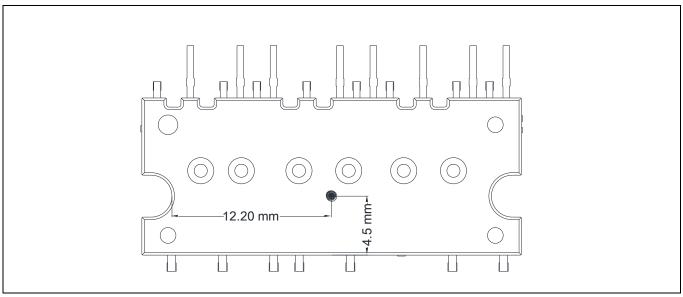


Figure 8 T_c measurement point

11.2 Backside Curvature Measurement Points

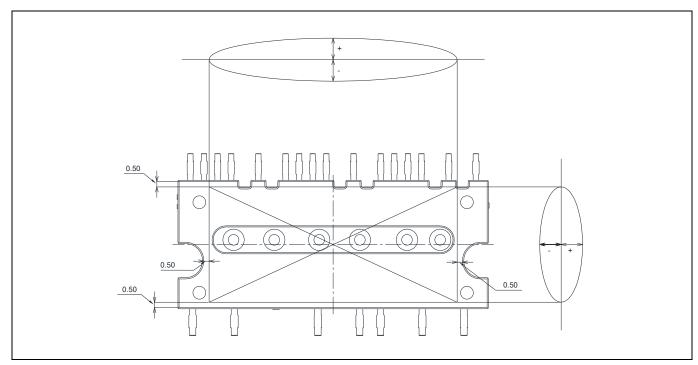


Figure 9 Curvature measurement points

Diagrams & **Tables**

11.3 Input-Output Logic Table

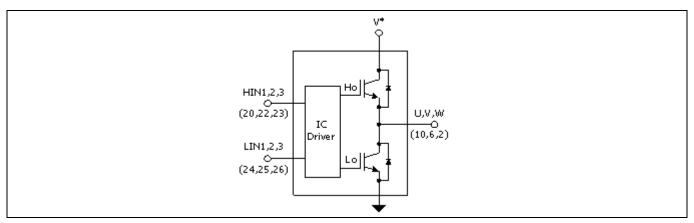


Figure 10 Module block diagram

Table 15

RFE	ITRIP	HIN1,2,3	N1,2,3 LIN1,2,3	
1	0	1	0	V+
1	0	0	1	0
1	0	0	0	‡
1	0	1	1	‡
1	1	х	х	‡
0	х	х	х	‡

[‡] Voltage depends on direction of phase current

Diagrams & **Tables**

11.4 Switching Time Definitions

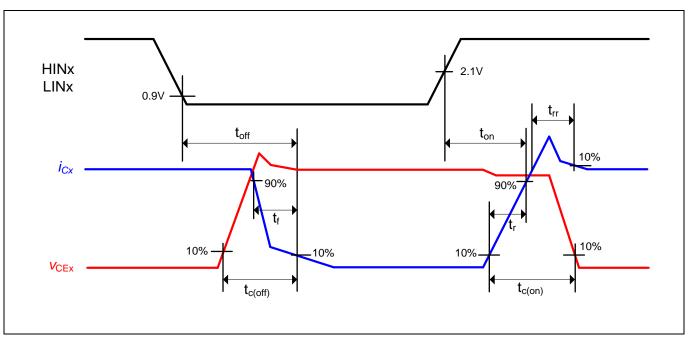


Figure 11 Switching times definition



Figure 12 ITRIP time waveform

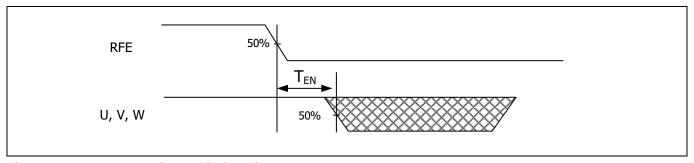


Figure 13 Output disable timing diagram

Application Guide

12 Application Guide

12.1 Typical Application Schematic

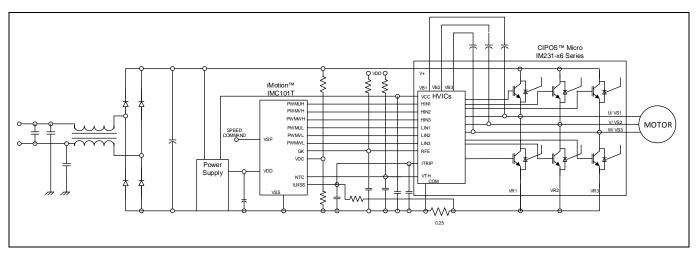


Figure 14 Application schematic

12.2 $T_J vs T_{TH}$

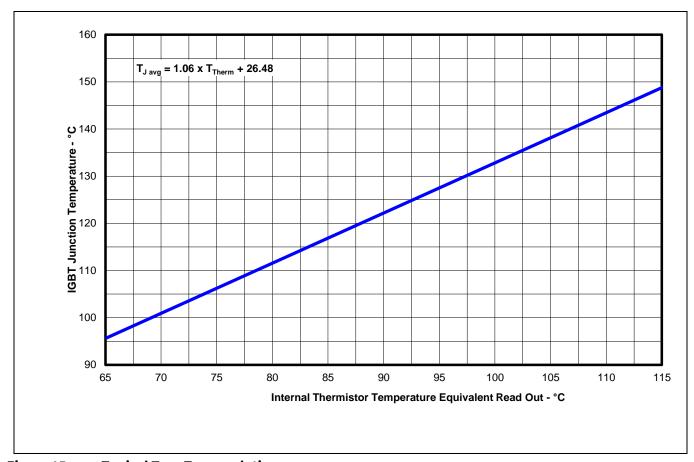
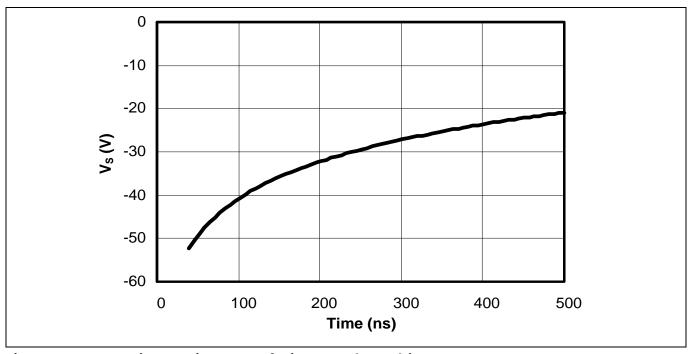
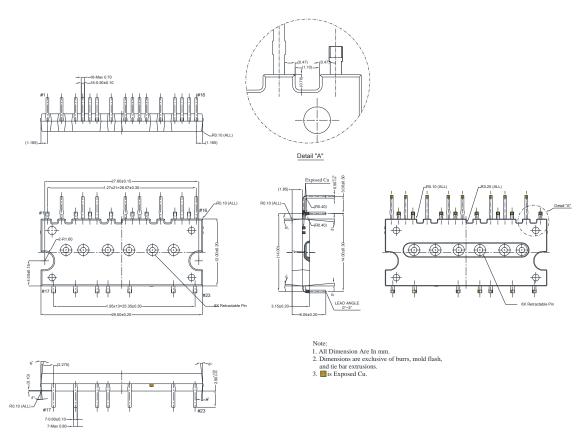


Figure 15 Typical T_J vs T_{TH} correlation

Application Guide

12.3 -V_s Immunity

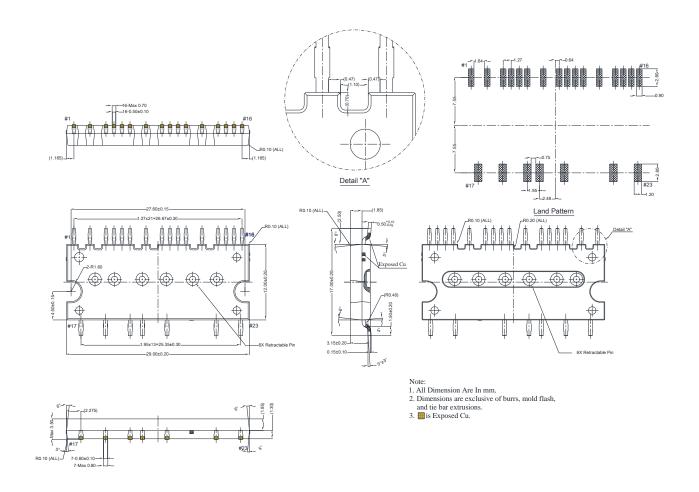



Figure 16 Negative transient V₅ SOA for integrated gate driver

Package Outline

13 Package Outline

13.1 DIP 29x12



Dimensions in mm

Package Outline

13.2 SOP 29x12

Dimensions in mm

IM231-L6S1B / IM231-L6T2B

Package Outline

Revision History

	•			•				
Ma	ınr	char	ΙσΔς	since	tha	lact	rav	/ICIΛN
IVIG	,	Ciiai	ىج	311166		wst		13101

Page or Reference	Description of change

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2018-03-02
Published by
Infineon Technologies AG
81726 München, Germany

© 2019 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contair dangerous substances. For information on the types in question please contact your nearest Infineor Technologies office.

Except as otherwise explicitly approved by Infineor Technologies in a written document signed by authorized representatives of Infineor Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof car reasonably be expected to result in personal injury.