SNOSBS0D - SEPTEMBER 1999-REVISED MARCH 2013

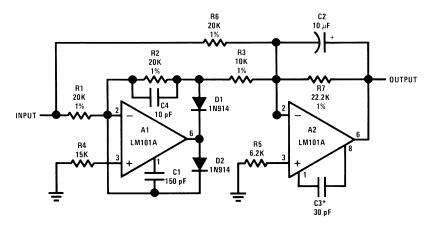
LM101A/LM201A/LM301A Operational Amplifiers

Check for Samples: LM101A-N, LM201A-N, LM301A-N

FEATURES

- Improved Specifications include:
- Offset Voltage 3 mV Maximum Over Temperature (LM101A/LM201A)
- Input Current 100 nA Maximum Over Temperature (LM101A/LM201A)
- Offset Current 20 nA Maximum Over Temperature (LM101A/LM201A)
- · Specified Drift Characteristics
- Offsets Specified Over Entire Common Mode and Supply Voltage Ranges
- Slew Rate of 10V/µs as a Summing Amplifier

DESCRIPTION


The LM101A series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. Advanced processing techniques make possible an order of magnitude reduction in input currents, and a redesign of the biasing circuitry reduces the temperature drift of input current.

This amplifier offers many features which make its application nearly foolproof: Overload protection on the input and output, no latch-up when the common mode range is exceeded, and freedom from oscillations and compensation with a single 30 pF Capacitor. It has advantages over internally compensated amplifiers in that the frequency compensation can be tailored to the particular application. For example, in low frequency circuits it can be overcompensated for increased stability margin or the compensation can be optimized to give more than a factor of ten improvement in high frequency performance for most applications.

In Addition, the device provides better accuracy and lower noise in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators or timers, sample and hold circuits and low frequency waveform generators. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, It can give lower offset voltage and a drift at a lower cost.

The LM101A is ensured over a temperature range of -55° C to $+125^{\circ}$ C, the LM201A from -25° C to $+85^{\circ}$ C, and the LM301A from 0° C to $+70^{\circ}$ C.

Fast AC-DC Converter

Feedforward compensation can be used to make a fast full wave rectifier without a filter.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)(2)

	LM101A/LM201A	LM301A		
Supply Voltage	±22V	±18V		
Differential Input Voltage	±30V	±30V		
Input Voltage (3)	±15V	±15V		
Output Short Circuit Duration (4)	Continuous	Continuous		
Operating Ambient Temp. Range	−55°C to +125°C (LM101A)	0°C to +70°C		
	-25°C to +85°C (LM201A)			
T _J Max				
LMC0008C Package	150°C	100°C		
P0008E Package	150°C	100°C		
NAB0008A, J0014A Package	150°C	100°C		
Power Dissipation at T _A = 25°C				
LMC0008C-Package (Still Air)	500 mW	300 mW		
(400 LF/Min Air Flow)	1200 mW	700 mW		
P0008E Package	900 mW	500 mW		
NAB0008A, J0014A Package	1000 mW	650 mW		
Thermal Resistance (Typical) θ _{jA}				
LMC0008C Package (Still Air)	165°C/W	165°C/W		
(400 LF/Min Air Flow)	67°C/W	67°C/W		
P0008E Package	135°C/W	135°C/W		
NAB0008A, J0014A Package	110°C/W	110°CmW		
(Typical) θ _{jC}				
LMC0008C Package	25°C/W	25°C/W		
Storage Temperature Range	−65°C to +150°C	-65°C to +150°C		
Lead Temperature (Soldering, 10 sec.)				
LMC0008C or NAB0008A, J0014A, NAD0010A	300°C	300°C		
P0008E	260°C	260°C		
ESD Tolerance ⁽⁵⁾	2000V	2000V		

⁽¹⁾ Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate for which the device is functional, but do no ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.

⁽²⁾ If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

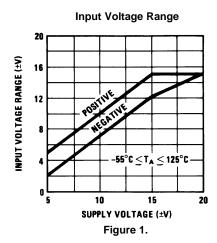
⁽³⁾ For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

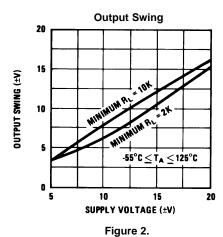
⁽⁴⁾ Continuous short circuit is allowed for case temperatures to 125°C and ambient temperatures to 75°C for LM101A/LM201A, and 70°C and 55°C respectively for LM301A.

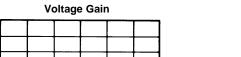
⁽⁵⁾ Human body model, 100 pF discharged through 1.5 kΩ.

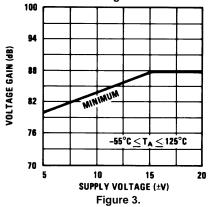
Electrical Characteristics(1)

 $T_A = T_J$

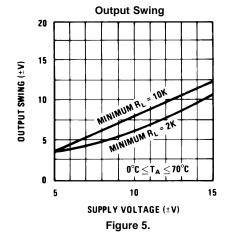

Danamatan	Took Consist	LM	101A/LM20						
Parameter	Test Conditi	Min	Тур	Max	Min	Тур	Max	Units	
Input Offset Voltage	$T_A = 25^{\circ}C, R_S \le 50 \text{ k}\Omega$		0.7	2.0		2.0	7.5	mV	
Input Offset Current	T _A = 25°C			1.5	10		3.0	50	nA
Input Bias Current	T _A = 25°C			30	75		70	250	nA
Input Resistance	T _A = 25°C		1.5	4.0		0.5	2.0		ΜΩ
Supply Current	T _A = 25°C	$V_S = \pm 20V$		1.8	3.0				mA
		$V_S = \pm 15V$					1.8	3.0	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C, V_S = \pm 15V$	50	160		25	160		V/mV	
	$V_{OUT} = \pm 10V, R_L \ge 2 k\Omega$								
Input Offset Voltage	R _S ≤ 50 kΩ				3.0			10	mV
Average Temperature Coefficient of Input Offset Voltage	R _S ≤ 50 kΩ			3.0	15		6.0	30	μV/°C
Input Offset Current					20			70	nA
Average Temperature Coefficient of	$25^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq \text{T}_{\text{MAX}}$			0.01	0.1		0.01	0.3	nA/°C
Input Offset Current	$T_{MIN} \le T_A \le 25^{\circ}C$		0.02	0.2		0.02	0.6	nA/°C	
Input Bias Current					0.1			0.3	μΑ
Supply Current	$T_A = T_{MAX}$, $V_S = \pm 20V$			1.2	2.5				mA
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 2k$		25			15			V/mV
Output Voltage Swing	$V_{S} = \pm 15V$	$R_L = 10 \text{ k}\Omega$	±12	±14		±12	±14		V
		$R_L = 2 k\Omega$	±10	±13		±10	±13		V
Input Voltage Range	V _S = ±20V		±15						V
	V _S = ±15V		+15, -13		±12	+15, -13		V	
Common-Mode Rejection Ratio	R _S ≤ 50 kΩ		80	96		70	90		dB
Supply Voltage Rejection Ratio	R _S ≤ 50 kΩ	80	96		70	96		dB	


⁽¹⁾ Unless otherwise specified, these specifications apply for C1 = 30 pF, \pm 5V \leq V_S \leq \pm 20V and -55°C \leq T_A \leq +125°C (LM101A), \pm 5V \leq V_S \leq \pm 20V and -25°C \leq T_A \leq +85°C (LM201A), \pm 5V \leq V_S \leq \pm 15V and 0°C \leq T_A \leq +70°C (LM301A).



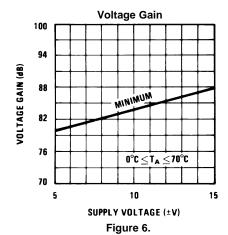

Typical Performance Characteristics

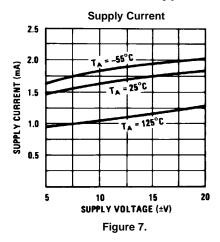
LM101A/LM201A

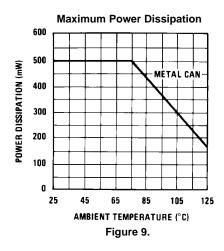


Performance Characteristics

LM301A




Performance Characteristics (continued)


LM301A

Typical Performance Characteristics

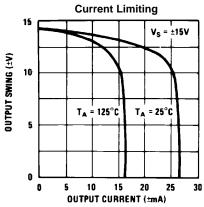
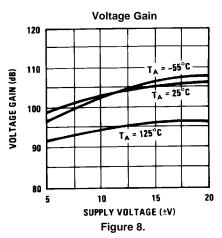
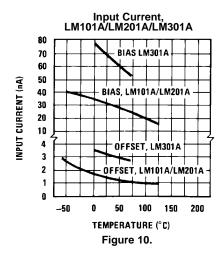
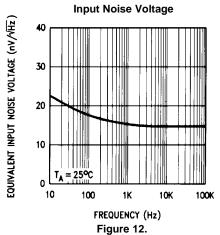
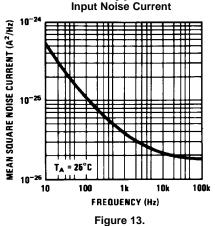
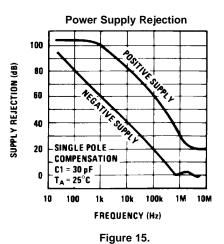
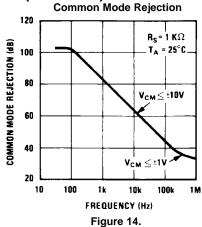
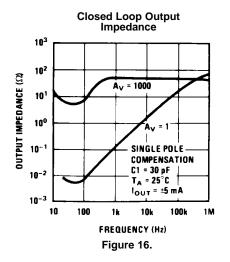





Figure 11.

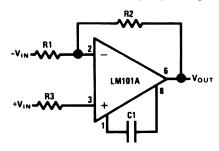


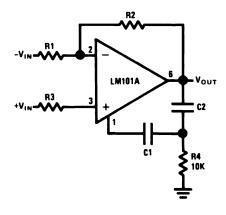






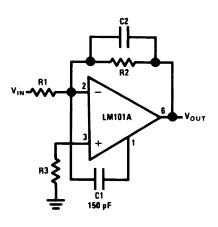
Typical Performance Characteristics (continued) Input Noise Current Common N





Typical Performance Characteristics for Various Compensation Circuits

Pin connections shown are for 8-pin packages.



 $C1 \geq \frac{R1 C_S}{R1 + R2}$ $C_S = 30 \ pF$

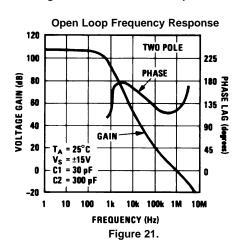
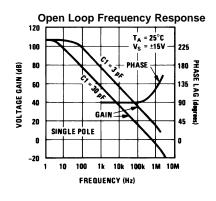
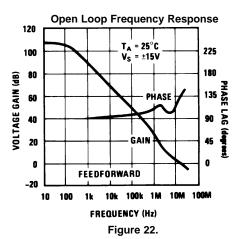
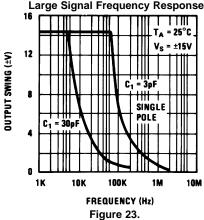
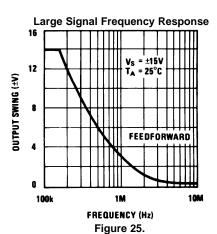

 $C_1 \ge \frac{R_1 C_S}{R_1 + R_2}$ $C_S = 30 \text{ pF}$ $C_2 = 10 C_1$

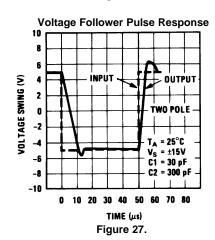
Figure 17. Single Pole Compensation

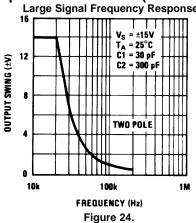
 $C2 = \frac{1}{2\pi f_0 R2}$ $f_0 = 3 MHz$

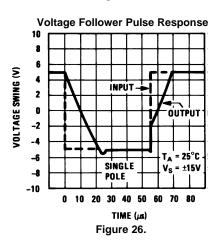
Figure 19. Feedforward Compensation

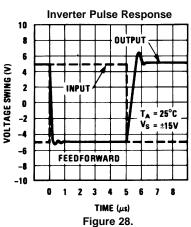





Figure 20.






Typical Performance Characteristics for Various Compensation Circuits (continued) Large Signal Frequency Response Large Signal Frequency Response



TYPICAL APPLICATIONS

Pin connections shown are for 8-pin packages

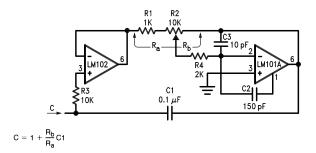


Figure 29. Variable Capacitance Multiplier

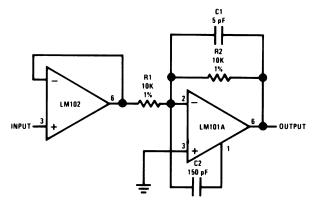
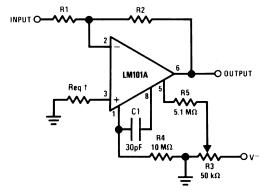
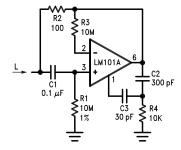




Figure 31. Fast Inverting Amplifier with High Input Impedance

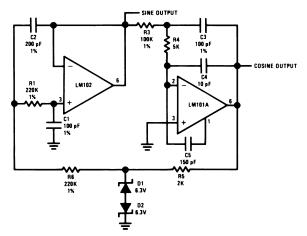

†May be zero or equal to parallel combination of R1 and R2 for minimum offset.

Figure 32. Inverting Amplifier with Balancing Circuit

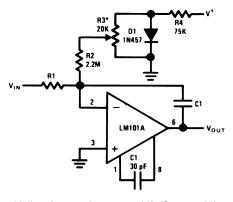

 $L \approx R1 R2 C1$ $R_S = R2$ $R_P = R1$

Figure 30. Simulated Inductor

 $f_0 = 10 \text{ kHz}$

Figure 33. Sine Wave Oscillator

*Adjust for zero integrator drift. Current drift typically 0.1 nA/°C over -55°C to +125°C temperature range.

Figure 34. Integrator with Bias Current Compensation

Application Hints

Pin connections shown are for 8-pin packages.

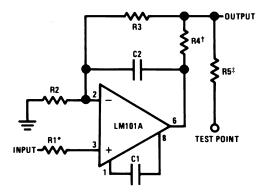
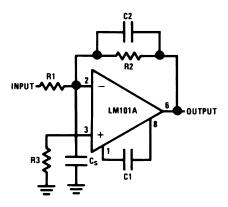



Figure 35. Protecting Against Gross Fault Conditions

 $C2 = \frac{R1 C_S}{R2}$

Figure 36. Compensating for Stray Input Capacitances or Large Feedback Resistor

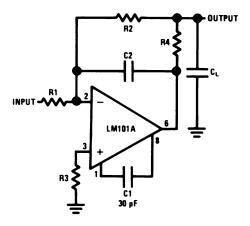


Figure 37. Isolating Large Capacitive Loads

^{*}Protects input

[†]Protects output

[‡]Protects output—not needed when R4 is used.

LM101A-N, LM201A-N, LM301A-N

Although the LM101A is designed for trouble free operation, experience has indicated that it is wise to observe certain precautions given below to protect the devices from abnormal operating conditions. It might be pointed out that the advice given here is applicable to practically any IC op amp, although the exact reason why may differ with different devices.

When driving either input from a low-impedance source, a limiting resistor should be placed in series with the input lead to limit the peak instantaneous output current of the source to something less than 100 mA. This is especially important when the inputs go outside a piece of equipment where they could accidentally be connected to high voltage sources. Large capacitors on the input (greater than 0.1 μ F) should be treated as a low source impedance and isolated with a resistor. Low impedance sources do not cause a problem unless their output voltage exceeds the supply voltage. However, the supplies go to zero when they are turned off, so the isolation is usually needed.

The output circuitry is protected against damage from shorts to ground. However, when the amplifier output is connected to a test point, it should be isolated by a limiting resistor, as test points frequently get shorted to bad places. Further, when the amplifer drives a load external to the equipment, it is also advisable to use some sort of limiting resistance to preclude mishaps.

Precautions should be taken to insure that the power supplies for the integrated circuit never become reversed—even under transient conditions. With reverse voltages greater than 1V, the IC will conduct excessive current, fusing internal aluminum interconnects. If there is a possibility of this happening, clamp diodes with a high peak current rating should be installed on the supply lines. Reversal of the voltage between V⁺ and V⁻ will always cause a problem, although reversals with respect to ground may also give difficulties in many circuits.

The minimum values given for the frequency compensation capacitor are stable only for source resistances less than 10 $k\Omega$, stray capacitances on the summing junction less than 5 pF and capacitive loads smaller than 100 pF. If any of these conditions are not met, it becomes necessary to overcompensate the amplifier with a larger compensation capacitor. Alternately, lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors or an RC network can be added to isolate capacitive loads.

Although the LM101A is relatively unaffected by supply bypassing, this cannot be ignored altogether. Generally it is necessary to bypass the supplies to ground at least once on every circuit card, and more bypass points may be required if more than five amplifiers are used. When feed-forward compensation is employed, however, it is advisable to bypass the supply leads of each amplifier with low inductance capacitors because of the higher frequencies involved.

Typical Applications

Pin connections shown are for 8-pin packages.

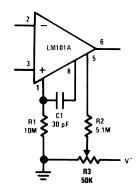
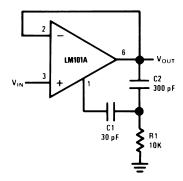
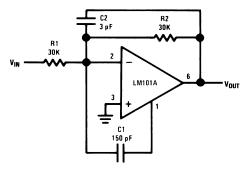
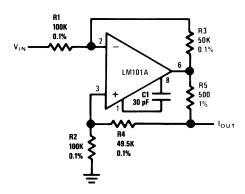




Figure 38. Standard Compensation and Offset Balancing Circuit

Power Bandwidth: 15 kHz Slew Rate: 1V/µs

Figure 39. Fast Voltage Follower



Power Bandwidth: 250 kHz Small Signal Bandwiidth: 3.5 MHz

Slew Rate: 10V/µs

Figure 40. Fast Summing Amplifier

 $I_{OUT} = \frac{R3 V_{IN}}{R1 R5}$ R3 = R4 + R5 R1 = R2

Figure 41. Bilateral Current Source

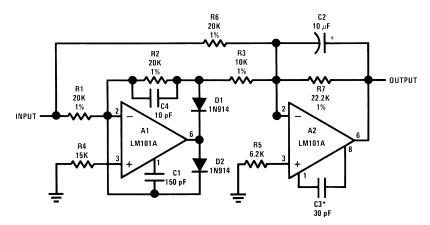
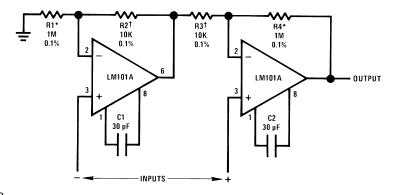
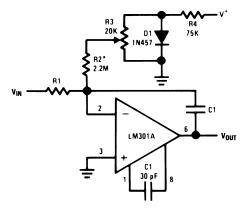



Figure 42. Fast AC/DC Converter⁽¹⁾



R1 = R4; R2 = R3 $A_V = 1 + \frac{R1}{R2}$

*,† Matching determines CMRR.

Figure 43. Instrumentation Amplifier

^{*}Adjust for zero integrator drift. Current drift typically 0.1 nA/°C over 0°C to +70°C temperature range.

Figure 44. Integrator with Bias Current Compensation

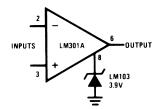


Figure 45. Voltage Comparator for Driving RTL Logic or High Current Driver

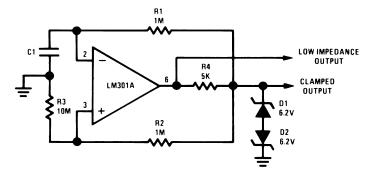
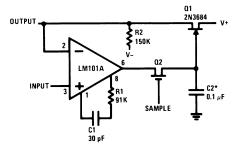



Figure 46. Low Frequency Square Wave Generator

^{*}Polycarbonate-dielectric capacitor

Figure 47. Low Drift Sample and Hold

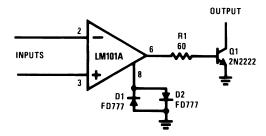
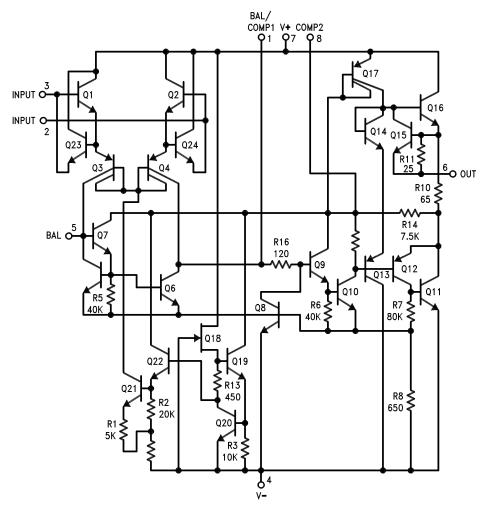



Figure 48. Voltage Comparator for Driving DTL or TTL Integrated Circuits

Schematic

Pin connections shown are for 8-pin packages.

Connection Diagrams

Top View

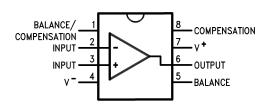


Figure 49. CDIP and PDIP Packages Package Number NAB0008A or P0008E

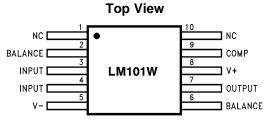


Figure 50. CLGA Package Package Number NAD0010A

TOP VIEW COMPENSATION BALANCE 1 6 OUTPUT INPUTS 3 4 5 BALANCE

Figure 51. TO-99 Package See Package Number LMC0008C

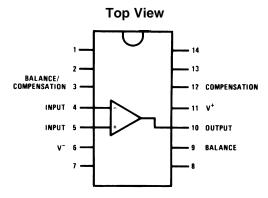



Figure 52. CDIP Package See Package Number J0014A,

LM101A-N, LM201A-N, LM301A-N

REVISION HISTORY

Changes from Revision C (March 2013) to Revision D							
•	Changed layout of National Data Sheet to TI format	1	7				

19-Mar-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LM101AH	ACTIVE	TO-99	LMC	8	500	TBD	Call TI	Call TI	-55 to 125	(LM101AH ~ LM101AH)	Samples
LM101AH/NOPB	ACTIVE	TO-99	LMC	8	500	Green (RoHS & no Sb/Br)	Call TI	Level-1-NA-UNLIM	-55 to 125	(LM101AH ~ LM101AH)	Samples
LM101AJ	ACTIVE	CDIP	NAB	8	40	TBD	Call TI	Call TI	-55 to 125	LM101AJ	Samples
LM201AH	ACTIVE	TO-99	LMC	8	500	TBD	Call TI	Call TI	-40 to 85	(LM201AH ~ LM201AH)	Samples
LM201AH/NOPB	ACTIVE	TO-99	LMC	8	500	Green (RoHS & no Sb/Br)	Call TI	Level-1-NA-UNLIM	-40 to 85	(LM201AH ~ LM201AH)	Samples
LM301AH	ACTIVE	TO-99	LMC	8	500	TBD	Call TI	Call TI	0 to 70	(LM301AH ~ LM301AH)	Samples
LM301AH/NOPB	ACTIVE	TO-99	LMC	8	500	Green (RoHS & no Sb/Br)	Call TI	Level-1-NA-UNLIM	0 to 70	(LM301AH ~ LM301AH)	Samples
LM301AN/NOPB	ACTIVE	PDIP	Р	8	40	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	0 to 70	LM 301AN	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

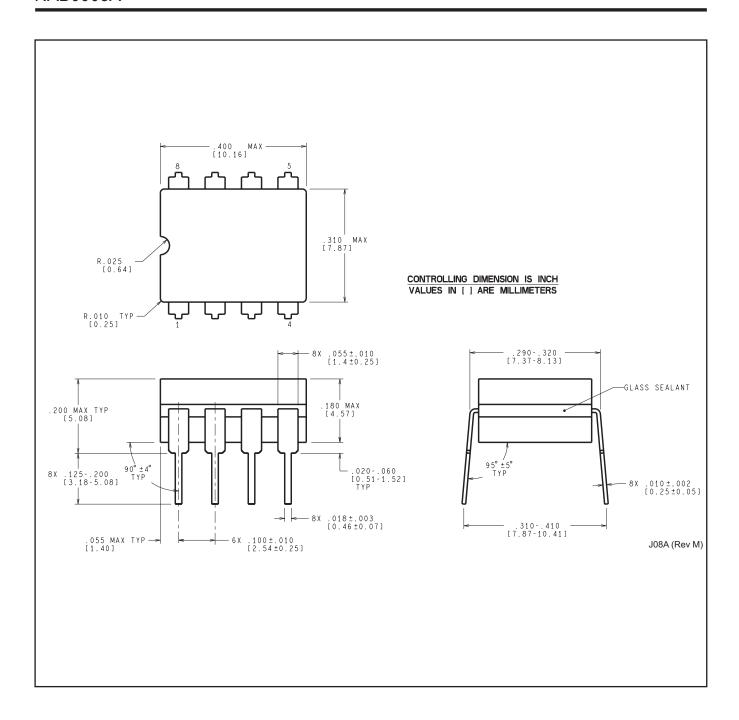
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

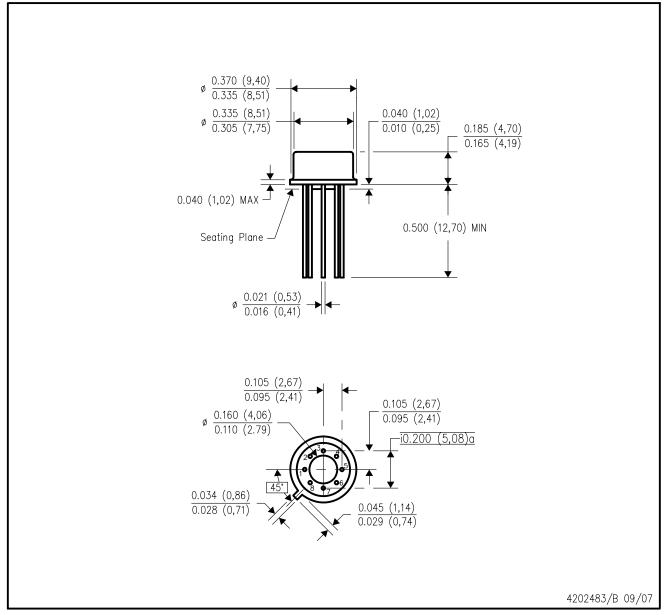
TBD: The Pb-Free/Green conversion plan has not been defined.


Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

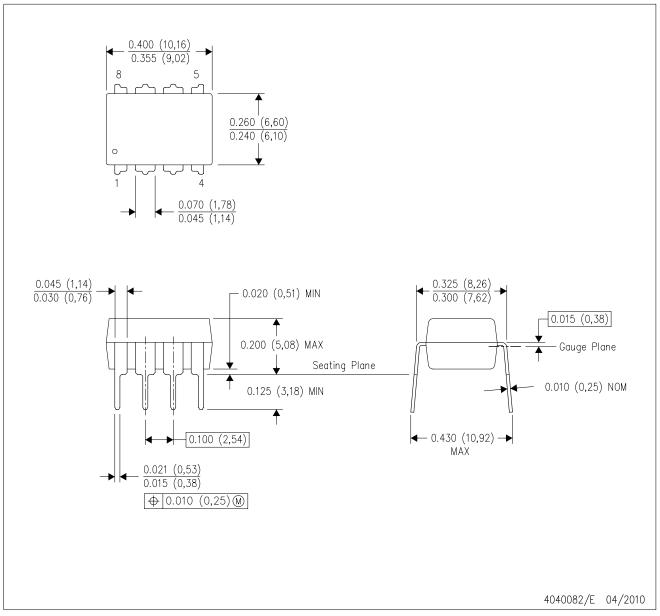
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.


⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

LMC (O-MBCY-W8)

METAL CYLINDRICAL PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. Leads in true position within 0.010 (0,25) R @ MMC at seating plane.
 - D. Pin numbers shown for reference only. Numbers may not be marked on package.
 - E. Falls within JEDEC MO-002/TO-99.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

