

SNOSBH4E -MAY 1998-REVISED OCTOBER 2015

LM10

LM10 Operational Amplifier and Voltage Reference

1 Features

Input Offset Voltage: 2 mV (Maximum)
Input Offset Current: 0.7 nA (Maximum)
Input Bias Current: 20 nA (Maximum)
Reference Regulation: 0.1% (Maximum)

Offset Voltage Drift: 2 μV/°C
Reference Drift: 0.002%/°C

2 Applications

· Remote Amplifiers

· Battery-Level Indicators

• Thermocouple Transmitters

· Voltage and Current regulators

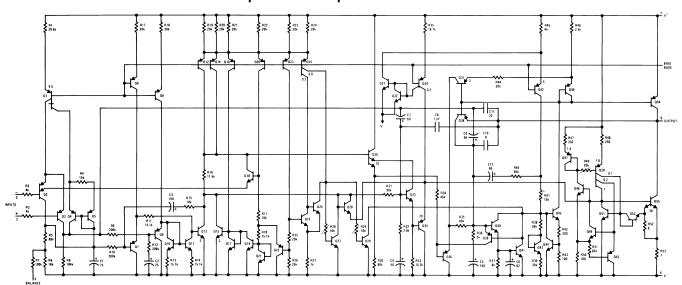
3 Description

The LM10 series are monolithic linear ICs consisting of a precision reference, an adjustable reference buffer and an independent, high-quality operational amplifier.

The unit can operate from a total supply voltage as low as 1.1 V or as high as 40 V, drawing only 270 μ A. A complementary output stage swings within 15 mV of the supply terminals or will deliver ±20-mA output current with ±0.4-V saturation. Reference output can be as low as 200 mV.

The circuit is recommended for portable equipment and is completely specified for operation from a single power cell. In contrast, high output-drive capability, both voltage and current, along with thermal overload protection, suggest it in demanding general-purpose applications.

The device is capable of operating in a floating mode, independent of fixed supplies. It can function as a remote comparator, signal conditioner, SCR controller or transmitter for analog signals, delivering the processed signal on the same line used to supply power. It is also suited for operation in a wide range of voltage and current regulator applications, from low voltages to several hundred volts, providing greater precision than existing ICs.


This series is available in the three standard temperature ranges, with the commercial part having relaxed limits. In addition, a low-voltage specification (suffix L) is available in the limited temperature ranges at a cost savings.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
	SOIC (14)	8.992 mm × 7.498 mm		
LM10	SDIP (8)	8.255 mm x 8.255 mm		
	PDIP (8)	9.81 mm × 6.35 mm		

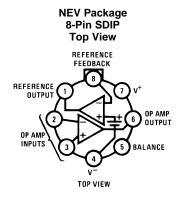
(1) For all available packages, see the orderable addendum at the end of the data sheet.

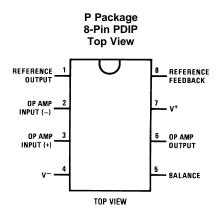
Operational Amplifier Schematic

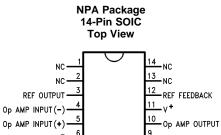
(Pin numbers are for 8-pin packages)

Table of Conten	ts
-----------------	----

1	Features 1	7.4 Device Functional Modes17
2	Applications 1	8 Application and Implementation 18
3	Description 1	8.1 Application Information
4	Revision History2	8.2 Typical Application18
5	Pin Configuration and Functions3	8.3 System Examples
6	Specifications	9 Power Supply Recommendations 27
Ü	6.1 Absolute Maximum Ratings	10 Layout 27
	6.2 Recommended Operating Conditions	10.1 Layout Guidelines27
	6.3 Thermal Information	10.2 Layout Example
	6.4 Electrical Characteristics LM10/LM10B	11 Device and Documentation Support 28
	6.5 Electrical Characteristics, LM10C	11.1 Device Support28
	6.6 Electrical Characteristics, LM10BL	11.2 Documentation Support
	6.7 Electrical Characteristics, LM10CL	11.3 Community Resources28
	6.8 Typical Characteristics	11.4 Trademarks 29
7	Detailed Description 17	11.5 Electrostatic Discharge Caution
•	7.1 Overview	11.6 Glossary
	7.2 Functional Block Diagram	12 Mechanical, Packaging, and Orderable Information29
	7.5 Todad Doscription	


4 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


5 Pin Configuration and Functions

Pin Functions — 8-Pin SDIP or PDIP

PIN		1/0	DESCRIPTION	
NAME	NO.	I/O	DESCRIPTION	
Balance	5	I	Used for offset nulling	
Op Amp Input (+)	3	I	Noninverting input of operational amplifier	
Op Amp Input (–)	2	I	Inverting input of operational amplifier	
Op Amp Output	6	0	Output terminal of operational amplifier	
Reference Feedback	8	I	Feedback terminal of reference	
Reference Output	1	0	Output terminal of reference	
V+	7	I	Positive supply voltage	
V-	4	I	Negative supply voltage	

Op AMP INPUT(+)

NC

Pin Functions — 14-Pin SOIC

-BALANCE

-NC

PIN	l	1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
Balance	9	I	Used for offset nulling
NC	1, 2, 7, 8, 14, 13	_	No connection
Op Amp Input (-)	4	I	Inverting input of operational amplifier
Op Amp Input (+)	5	I	Noninverting input of operational amplifier
Op Amp Output	10	0	Output terminal of operational amplifier
Reference Feedback	12	I	Feedback terminal of reference
Reference Output	3	0	Output terminal of reference
V+	11	I	Positive supply voltage
V-	6	I	Negative supply voltage

6 Specifications

6.1 Absolute Maximum Ratings

See (1)(2)(3)

			MIN MA	X UNI
Total according to the sec	LM10/LM10B/LM100		Internally limit Continuous 3 2 3) 1 1 1	5 V
Total supply voltage	LM10BL/LM10CL		7	· V
Differential input valters (4)	LM10/LM10B/LM100		±4	0 V
Differential input voltage ⁽⁴⁾	LM10BL/LM10CL		±	7 V
Power dissipation ⁽⁵⁾			Internally limite	d
Output short-circuit duration	1 ⁽⁶⁾		Continuous	
	ТО	Soldering (10 seconds)	30	00 °C
Lood towns are turn		Soldering (10 seconds)	26	0 °C
Lead temperature	DIP	Vapor phase (60 seconds)	21	5 °C
		Infrared (15 seconds)	22	.0 °C
	LM10		15	0 °C
Maximum junction temperature	LM10B		10	00 °C
tomporataro	LM10C		88	5 °C
Storage temperature, T _{stg}			-55 15	0 °C

- (1) Refer to RETS10X for LM10H military specifications.
- (2) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (3) If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.
- (4) The Input voltage can exceed the supply voltages provided that the voltage from the input to any other terminal does not exceed the maximum differential input voltage and excess dissipation is accounted for when V_{IN} < V⁻.
- (5) The maximum, operating-junction temperature is 150°C for the LM10, 100°C for the LM10B(L) and 85°C for the LM10C(L). At elevated temperatures, devices must be derated based on package thermal resistance.
- (6) Internal thermal limiting prevents excessive heating that could result in sudden failure, but the IC can be subjected to accelerated stress with a shorted output and worst-case conditions.

6.2 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	5 1 5 ()			
		MIN	NOM MAX	UNIT
Vs	Supply input voltage range (V–) – (V+)	1.2	40	٧
V _{CM}	Common-mode voltage	(V-)	(V+) - 0.85	٧
V _{REF}	Reference voltage		0.2	٧
I _{REF}	Reference current	0	1	mA

6.3 Thermal Information

		LM10			
	THERMAL METRIC ⁽¹⁾	NEV (SDIP)	NPA (SOIC)	P (PDIP)	UNIT
		8 PINS	14 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	150	90	87	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	45	_	_	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.4 Electrical Characteristics LM10/LM10B

T₁=25°C unless otherwise specified⁽¹⁾

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
lanut effect valtage	T _J =25°C		0.3	2	mV
Input offset voltage	$T_{MIN} \le T_{J} \le T_{MAX}$ (see ⁽¹⁾)			3	mV
In a t a # a a t a	T _J =25°C		0.25	0.7	nA
Input offset current ⁽²⁾	$T_{MIN} \le T_J \le T_{MAX}$ (see ⁽¹⁾)			1.5	nA
lament bing assument	T _J =25°C		10	20	nA
Input bias current	$T_{MIN} \le T_J \le T_{MAX}$ (see ⁽¹⁾)			30	nA
lament manifetance	T _J =25°C	250	500		kΩ
Input resistance	$T_{MIN} \le T_J \le T_{MAX}$ (see ⁽¹⁾)	150			kΩ
	$V_S = \pm 20 \text{ V}, I_{OUT} = 0$	120	400		V/mV
	$V_{OUT} = \pm 19.95 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	80		0.3 2 3 0.25 0.7 1.5 10 20 30 500 400 130 3 3 3 3 3 3 3 102 102 102 102 102 106 106 106 106 106 2 2 2 60 0.001 0.003	V/mV
	$V_S = \pm 20 \text{ V}, V_{OUT} = \pm 19.4 \text{ V}$	50	130		V/mV
	$I_{OUT} = \pm 20 \text{ mA}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	20			V/mV
Large signal voltage	$I_{OUT} = \pm 15 \text{ mA}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	20			V/mV
gain	$V_S = \pm 0.6 \text{ V}, I_{OUT} = \pm 2 \text{ mA}$	1.5	3		V/mV
	$V_S = \pm 0.65 \text{ V}, I_{OUT} = \pm 2 \text{ mA}, T_{MIN} \le T_J \le T_{MAX} \text{ (see }^{(1)}\text{)}$	1.5	3		V/mV
	$V_{OUT} = \pm 0.4 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	0.5		0.003 0.003 0.006	V/mV
	$V_{OUT} = \pm 0.3 \text{ V}, V_{CM} = -0.4 \text{ V}, T_{MIN} \le T_J \le T_{MAX} \text{ (see }^{(1)}\text{)}$	0.5			V/mV
	1.2 V ≤ V_{OUT} ≤ 40 V, R_L = 1.1 kΩ	14 33	V/mV		
400	$1.3 \text{ V} \le \text{V}_{\text{OUT}} \le 40 \text{ V}, \text{ R}_{\text{L}} = 1.1 \text{ k}\Omega, \text{ T}_{\text{MIN}} \le \text{T}_{\text{J}} \le \text{T}_{\text{MAX}} \text{ (see }^{(1)}\text{)}$	14	33		V/mV
Shunt gain (3)	$0.1 \text{ mA} \le I_{OUT} \le 5 \text{ mA}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	6			V/mV
	1.5 V ≤ V ⁺ ≤ 40 V, $R_L = 250 \Omega$	8	25		V/mV
	$0.1 \text{ mA} \le I_{OUT} \le 20 \text{ mA}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	4		2 3 0.7 1.5 20 30 30 0.003 0.003 0.003 0.1% 0.15%	V/mV
	-20 V ≤ V _{CM} ≤ 19.15 V	93	102		dB
Common-mode rejection	$-20 \text{ V} \le \text{V}_{CM} \le 19 \text{ V}, \text{T}_{MIN} \le \text{T}_{\text{J}} \le \text{T}_{MAX} \text{ (see }^{(1)}\text{)}$	93	102		dB
rejection	$V_S = \pm 20 \text{ V}, T_{MIN} \le T_J \le T_{MAX} \text{ (see }^{(1)}\text{)}$	87			dB
	-0.2 V ≥ V ⁻ ≥ -39 V	90	96		dB
	$V^{+} = 1 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	84			dB
Supply-voltage	$V^{+} = 1.1 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	84			dB
rejection	1 V ≤ V ⁺ ≤ 39.8 V	96	106		dB
	1.1 V \leq V ⁺ \leq 39.8 V, T _{MIN} \leq T _J \leq T _{MAX} (see ⁽¹⁾)	96	106		dB
	$V^- = -0.2 \text{ V}, T_{MIN} \le T_J \le T_{MAX} \text{ (see }^{(1)}\text{)}$	90		2 3 0.7 1.5 20 30 30 0.003 0.003 0.003 0.1% 0.15%	dB
Offset voltage drift			2		μV/°C
Offset current drift			2		pA/°C
Bias current drift	T _C < 100°C		60		pA/°C
las current drift	1.2 V ≤ V _S ≤ 40 V		0.001	0.003	%/V
Line regulation	$1.3 \text{ V} \le \text{V}_{\text{S}} \le 40 \text{ V}, \text{T}_{\text{MIN}} \le \text{T}_{\text{J}} \le \text{T}_{\text{MAX}} \text{ (see }^{(1)}\text{)}$		0.001	0.003	%/V
	$0 \le I_{REF} \le 1 \text{ mA}, V_{REF} = 200 \text{ mV}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)})$			1.5 10 20 30 500 400 130 3 3 3 3 3 33 25 102 102 102 102 96 106 106 2 2 2 60 001 0.003 0.006 01% 0.1% 0.15%	%/V
	0 ≤ I _{REF} ≤ 1 mA		0.01%	0.1%	
Load regulation	$V^{+}-V_{REF} \ge 1 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$			0.15%	
	$V^{+}-V_{REF} \ge 1.1 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$			0.15%	

⁽¹⁾ These specifications apply for $V^- \le V_{CM} \le V^+ - 0.85 \text{ V}$, 1 V ($T_{MIN} \le T_J \le T_{MAX}$), 1.2 V, 1.3 V ($T_{MIN} \le T_J \le T_{MAX}$) $< V_S \le V_{MAX}$, $V_{REF} = 0.2 \text{ V}$ and $0 \le I_{REF} \le 1 \text{ mA}$, unless otherwise specified: $V_{MAX} = 40 \text{ V}$ for the standard part and 6.5 V for the low voltage part. The full-temperature-range operation is -55°C to 125°C for the LM10, -25°C to 85°C for the LM10B(L) and 0°C to 70°C for the LM10C(L). The specifications do not include the effects of thermal gradients ($\tau_1 \approx 20$ ms), die heating ($\tau_2 \approx 0.2$ s) or package heating. Gradient effects

are small and tend to offset the electrical error (see curves). For $T_J > 90^{\circ}\text{C}$, I_{OS} may exceed 1.5 nA for $V_{CM} = V^{-}$. With $T_J = 125^{\circ}\text{C}$ and $V^{-} \leq V_{CM} \leq V^{-} + 0.1 \text{ V}$, $I_{OS} \leq 5 \text{ nA}$. This defines operation in floating applications such as the bootstrapped regulator or two-wire transmitter. Output is connected to the V^{+} terminal of the IC and input common mode is referred to V⁻ (see System Examples). Effect of larger output-voltage swings with higher load resistance can be accounted for by adding the positive-supply rejection error.

Electrical Characteristics LM10/LM10B (continued)

T₁=25°C unless otherwise specified⁽¹⁾

PARAMETER	Т	EST CONDITIONS	MIN	TYP	MAX	UNIT
A and lift and and lie	0.01/41/4.051/	T _J =25°C	50	75		V/mV
Amplifier gain	$0.2 \text{ V} \le \text{V}_{\text{REF}} \le 35 \text{ V}$	$T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	23		75 200 205 206 20 50 65 002	V/mV
Feedback sense	T _J =25°C		195	200	205	mV
voltage	$T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$		194		206	mV
voltage Feedback current	T _J =25°C			20	50	nA
	$T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$				65	nA
Reference drift				0.002		%/°C
Complex accuracy	T _J =25°C			270	400	μΑ
Supply current	$T_{MIN} \le T_J \le T_{MAX}$ (see ⁽¹⁾)				500	μΑ
	4.0.1/2.1/2.40.1/	T _J =25°C		15		
Supply current	$1.2 \text{ V} \leq \text{V}_{\text{S}} \leq 40 \text{ V}$	$T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$			75	μA
Supply current change	121/21/2101/	T _J =25°C		15		
	$1.3 \text{ V} \leq \text{V}_{\text{S}} \leq 40 \text{ V}$	$T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$			75	μA

6.5 Electrical Characteristics, LM10C

T₁=25°C unless otherwise specified⁽¹⁾

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
lanut effect voltage	T _J =25°C		0.5	4	mV
Input offset voltage	$T_{MIN} \le T_{J} \le T_{MAX}$ (see ⁽¹⁾)	0.5 4 5 0.4 2 3 12 30 40 150 400 115 80 400 50 25 130 15 15 1 3 1 3 0.75 0.75 10 33 10 33 6 6 6 25	mV		
Input offset current ⁽²⁾	T _J =25°C		0.4	2	nA
input onset current	$T_{MIN} \le T_{J} \le T_{MAX}$ (see ⁽¹⁾)			3	nA
Input hias current	T _J =25°C		12	30	nA
input bias current	$T_{MIN} \le T_{J} \le T_{MAX}$ (see ⁽¹⁾)			40	nA
Innut resistance	T _J =25°C	150	400		kΩ
input resistance	$T_{MIN} \le T_{J} \le T_{MAX}$ (see ⁽¹⁾)	115			kΩ
	$V_S = \pm 20 \text{ V}, I_{OUT} = 0$	80	400		V/mV
	$V_{OUT} = \pm 19.95 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	50			V/mV
	$V_S = \pm 20 \text{ V}, V_{OUT} = \pm 19.4 \text{ V}$	25	130		V/mV
	$I_{OUT} = \pm 20 \text{ mA}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	15			V/mV
Large signal voltage gain	$I_{OUT} = \pm 15 \text{ mA}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	15			V/mV
	$V_S = \pm 0.6 \text{ V}, I_{OUT} = \pm 2 \text{ mA}$	1	3		V/mV
	$V_S = 0.65 \text{ V}, I_{OUT} = \pm 2 \text{ mA}, T_{MIN} \le T_J \le T_{MAX} \text{ (see }^{(1)}\text{)}$	1	3		V/mV
	$V_{OUT} = \pm 0.4 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	0.75			V/mV
	$V_{OUT} = \pm 0.3 \text{ V}, V_{CM} = -0.4 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	0.75			V/mV
	1.2 V ≤ V_{OUT} ≤ 40 V, R_L = 1.1 kΩ	10	33		V/mV
	$1.3 \text{ V} \le \text{V}_{\text{OUT}} \le 40 \text{ V}, \text{ R}_{\text{L}} = 1.1 \text{ k}\Omega, \text{ T}_{\text{MIN}} \le \text{T}_{\text{J}} \le \text{T}_{\text{MAX}} \text{ (see }^{(1)}\text{)}$	10	33		V/mV
Shunt gain (3)	$0.1 \text{ mA} \le I_{OUT} \le 5 \text{ mA}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	6	5 0.4 2 3 12 30 40 150 400 115 80 400 50 25 130 15 15 1 3 1 3 0.75 0.75 10 33 10 33 6 6 6 25	V/mV	
	$1.5 \text{ V} \le \text{V}^+ \le 40 \text{ V}, \text{ R}_{\text{L}} = 250 \Omega$	6	25		V/mV
	$0.1 \text{ mA} \le I_{OUT} \le 20 \text{ mA}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	4			V/mV

⁽¹⁾ These specifications apply for $V^- \le V_{CM} \le V^+ - 0.85 \text{ V}$, 1 V ($T_{MIN} \le T_J \le T_{MAX}$), 1.2 V, 1.3 V ($T_{MIN} \le T_J \le T_{MAX}$) $< V_S \le V_{MAX}$, $V_{REF} = 0.2 \text{ V}$ and $0 \le I_{REF} \le 1 \text{ mA}$, unless otherwise specified: $V_{MAX} = 40 \text{ V}$ for the standard part and 6.5 V for the low voltage part. The full-temperature-range operation is -55°C to 125°C for the LM10, -25°C to 85°C for the LM10B(L) and 0°C to 70°C for the LM10C(L). The specifications do not include the effects of thermal gradients ($\tau_1 \approx 20$ ms), die heating ($\tau_2 \approx 0.2$ s) or package heating. Gradient effects

6

are small and tend to offset the electrical error (see curves). For $T_J > 90^{\circ}$ C, I_{OS} may exceed 1.5 nA for $V_{CM} = V^{-}$. With $T_J = 125^{\circ}$ C and $V^{-} \le V_{CM} \le V^{-} + 0.1$ V, $I_{OS} \le 5$ nA. This defines operation in floating applications with a sthe bootstrapped regulator or two-wire transmitter. Output is connected to the V^{+} terminal of the IC and input common mode is referred to V⁻ (see System Examples). Effect of larger output-voltage swings with higher load resistance can be accounted for by adding the positive-supply rejection error.

Electrical Characteristics, LM10C (continued)

 T_J =25°C unless otherwise specified⁽¹⁾

PARAMETER	TE	ST CONDITIONS	MIN	TYP	MAX	UNIT
	-20 V ≤ V _{CM} ≤ 19.15 V		90	102		dB
Common-mode rejection	-20 V ≤ V _{CM} ≤ 19 V		90	102		dB
	$V_S = \pm 20 \text{ V}, T_{MIN} \le T_J \le T_{MA}$	x (see ⁽¹⁾)	87			dB
	-0.2 V ≥ V ⁻ ≥ -39 V		87	96		dB
	$V^+ = 1 \text{ V}, \text{ T}_{MIN} \leq T_J \leq T_{MAX}$ (see ⁽¹⁾)	84			dB
Supply-voltage rejection	$V^+ = 1.1 \text{ V}, T_{MIN} \le T_J \le T_{MAX}$	((see ⁽¹⁾)	84			dB
	1 V ≤ V ⁺ ≤ 39.8 V		93	106		dB
	1.1 V ≤ V ⁺ ≤ 39.8 V, T _{MIN} ≤	$T_J \le T_{MAX}$ (see ⁽¹⁾)	93	106		dB
	$V^- = -0.2 \text{ V}, T_{MIN} \le T_J \le T_{MA}$	AX (see ⁽¹⁾)	90			dB
Offset voltage drift				5		μV/°C
Offset current drift				5		pA/°C
Bias current drift	T _C < 100°C			90		pA/°C
Line regulation	1.2 V ≤ V _S ≤ 40 V			0.001	0.008	%/V
	$1.3 \text{ V} \le \text{V}_{\text{S}} \le 40 \text{ V}, \text{T}_{\text{MIN}} \le \text{T}_{\text{J}}$	$1.3 \text{ V} \le \text{V}_{\text{S}} \le 40 \text{ V}, \text{T}_{\text{MIN}} \le \text{T}_{\text{J}} \le \text{T}_{\text{MAX}} \text{ (see }^{(1)}\text{)}$		0.001	0.008	%/V
	$0 \le I_{REF} \le 1 \text{ mA}, V_{REF} = 200 \text{ mV}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$				0.01	%/V
	0 ≤ I _{REF} ≤ 1 mA			0.01%	0.15%	
Load regulation	$V^+ - V_{REF} \ge 1 \text{ V}, T_{MIN} \le T_J \le 1 \text{ V}$	T _{MAX} (see ⁽¹⁾)			0.2%	
	V ⁺ - V _{REF} ≥ 1.1 V, T _{MIN} ≤ T _J	≤ T _{MAX} (see ⁽¹⁾)			0.2%	
A 1101	0.01/41/	T _J =25°C	25	70		V/mV
Amplifier gain	0.2 V ≤ V _{REF} ≤ 35 V	$T_{MIN} \le T_J \le T_{MAX}$ (see ⁽¹⁾)	15			V/mV
For divine to a constraint	T _J =25°C	,	190	200	210	mV
Feedback sense voltage	$T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$		189		211	mV
F	T _J =25°C			22	75	nA
Feedback current	$T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$				90	nA
Reference drift				0.003		%/°C
T _J =25°C				300	500	μΑ
Supply current	$T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$				570	μA
	4.2.1/ < 40.1/	T _J =25°C		15		μΑ
Complete assument also a second	1.2 V ≤ V _S ≤ 40 V	$T_{MIN} \le T_{J} \le T_{MAX}$ (see ⁽¹⁾)			75	
Supply current change	4.2.1/ < 40.1/	T _J =25°C		15		0
	$1.3 \text{ V} \leq \text{V}_{\text{S}} \leq 40 \text{ V}$	$T_{MIN} \le T_J \le T_{MAX}$ (see ⁽¹⁾)			75	μΑ

6.6 Electrical Characteristics, LM10BL

T₁=25°C unless otherwise specified. (1)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Innut offset valtage	T _J =25°C		0.3	2	mV
Input offset voltage	$T_{MIN} \le T_{J} \le T_{MAX}$ (see ⁽¹⁾)			3	mV
Innut offert aument(2)	T _J =25°C		0.1	0.7	nA
Input offset current ⁽²⁾	$T_{MIN} \le T_J \le T_{MAX}$ (see ⁽¹⁾)			1.5	nA
Innut hing gurrant	T _J =25°C		10	20	nA
Input bias current	$T_{MIN} \le T_{J} \le T_{MAX}$ (see ⁽¹⁾)			30	nA
Input registance	T _J =25°C	250	500		kΩ
Input resistance	$T_{MIN} \le T_{J} \le T_{MAX}$ (see ⁽¹⁾)	150			kΩ
	$V_S = \pm 3.25 \text{ V}, I_{OUT} = 0$	60	300		V/mV
	$V_{OUT} = \pm 3.2 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	40			V/mV
	$V_S = \pm 3.25 \text{ V}, I_{OUT} = 10 \text{ mA}$	10	25		V/mV
l avec almost valtage main	$V_{OUT} = \pm 2.75 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	4			V/mV
Large signal voltage gain	$V_S = \pm 0.6 \text{ V}, I_{OUT} = \pm 2 \text{ mA}$	1.5	3		V/mV
	$V_S = 0.65 \text{ V}, I_{OUT} = \pm 2 \text{ mA}, T_{MIN} \le T_J \le T_{MAX} \text{ (see }^{(1)}\text{)}$	1.5	3		V/mV
	$V_{OUT} = \pm 0.4 \text{ V}, V_{CM} = -0.4 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	0.5			V/mV
	$V_{OUT} = \pm 0.3 \text{ V}, V_{CM} = -0.4 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	0.5			V/mV
Character (3)	$1.5 \text{ V} \leq \text{V} \stackrel{+}{\leq} 6.5 \text{ V}, \text{ R}_{\text{L}} = 500 \Omega$	8	30		V/mV
Shunt gain (3)	$0.1 \text{ mA} \le I_{OUT} \le 10 \text{ mA}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	4			V/mV
	-3.25 V ≤ V _{CM} ≤ 2.4 V	00	400		.ID
Common-mode rejection	$-3.25 \text{ V} \le \text{V}_{\text{CM}} \le 2.25 \text{ V}, \text{T}_{\text{MIN}} \le \text{T}_{\text{J}} \le \text{T}_{\text{MAX}} \text{ (see }^{(1)}\text{)}$	89	102		dB
	$V_S = \pm 3.25 \text{ V}, T_{MIN} \le T_J \le T_{MAX} \text{ (see }^{(1)}\text{)}$	83			dB
	-0.2 V ≥ V ⁻ ≥ -5.4 V	86	96		dB
	$V^{+} = 1 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	80			dB
Owner by continuous and and the	$V^{+} = 1.2 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	80			dB
Supply-voltage rejection	1 V ≤ V ⁺ ≤ 6.3 V	94	106		dB
	1.1 $V \le V^+ \le 6.3 \text{ V}$, $T_{MIN} \le T_J \le T_{MAX}$ (see ⁽¹⁾)	94	106		dB
	$V^-=0.2 \text{ V}, T_{MIN} \le T_J \le T_{MAX} \text{ (see }^{(1)}\text{)}$	88			dB
Offset voltage drift			2		μV/°C
Offset current drift			2		pA/°C
Bias current drift			60		pA/°C
	1.2 V ≤ V _S ≤ 6.5 V		0.001	0.01	%/V
Line regulation	$1.3 \text{ V} \le \text{V}_{\text{S}} \le 6.5 \text{ V}, \text{T}_{\text{MIN}} \le \text{T}_{\text{J}} \le \text{T}_{\text{MAX}} \text{ (see }^{(1)}\text{)}$		0.001	0.01	%/V
	$0 \le I_{REF} \le 0.5$ mA, $V_{REF} = 200$ mV, $T_{MIN} \le T_{J} \le T_{MAX}$ (see $^{(1)}$)			0.02	%/V
	0 ≤ I _{REF} ≤ 0.5 mA		0.01%	0.1%	
Load regulation	$V^{+} - V_{REF} \ge 1 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$			0.15%	
	$V^{+}-V_{REF} \ge 1.1 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$			0.15%	
A see lift on main	T _J =25°C	30	70		V/mV
Amplifier gain	$0.2 \text{ V} \le \text{V}_{\text{REF}} \le 5.5 \text{ V}$ $T_{\text{MIN}} \le T_{\text{J}} \le T_{\text{MAX}} \text{ (see }^{(1)}\text{)}$	20			V/mV
Farally and the second of the	T _J =25°C	195	200	205	mV
Feedback sense voltage	$T_{MIN} \le T_{J} \le T_{MAX}$ (see ⁽¹⁾)	194		206	mV

⁽¹⁾ These specifications apply for $V^- \le V_{CM} \le V^+ - 0.85 \text{ V}$, 1 V ($T_{MIN} \le T_J \le T_{MAX}$), 1.2 V, 1.3 V ($T_{MIN} \le T_J \le T_{MAX}$) $< V_S \le V_{MAX}$, $V_{REF} = 0.2 \text{ V}$ and $0 \le I_{REF} \le 1 \text{ mA}$, unless otherwise specified: $V_{MAX} = 40 \text{ V}$ for the standard part and 6.5 V for the low voltage part. The full-temperature-range operation is -55°C to 125°C for the LM10, -25°C to 85°C for the LM10B(L) and 0°C to 70°C for the LM10C(L). The specifications do not include the effects of thermal gradients ($\tau_1 \approx 20$ ms), die heating ($\tau_2 \approx 0.2$ s) or package heating. Gradient effects

8

are small and tend to offset the electrical error (see curves). For $T_J > 90^{\circ}\text{C}$, I_{OS} may exceed 1.5 nA for $V_{CM} = V^{-}$. With $T_J = 125^{\circ}\text{C}$ and $V^{-} \leq V_{CM} \leq V^{-} + 0.1 \text{ V}$, $I_{OS} \leq 5 \text{ nA}$. This defines operation in floating applications such as the bootstrapped regulator or two-wire transmitter. Output is connected to the V^{+} terminal of the IC and input common mode is referred to V⁻ (see System Examples). Effect of larger output-voltage swings with higher load resistance can be accounted for by adding the positive-supply rejection error.

Electrical Characteristics, LM10BL (continued)

T_J=25°C unless otherwise specified. (1)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Feedback current	T _J =25°C		20	50	nA
	$T_{MIN} \le T_{J} \le T_{MAX}$ (see ⁽¹⁾)			65	nA
Reference drift			0.002		%/°C
Supply current	T _J =25°C		260	400	μΑ
	$T_{MIN} \le T_{J} \le T_{MAX}$ (see ⁽¹⁾)			500	μΑ

6.7 Electrical Characteristics, LM10CL

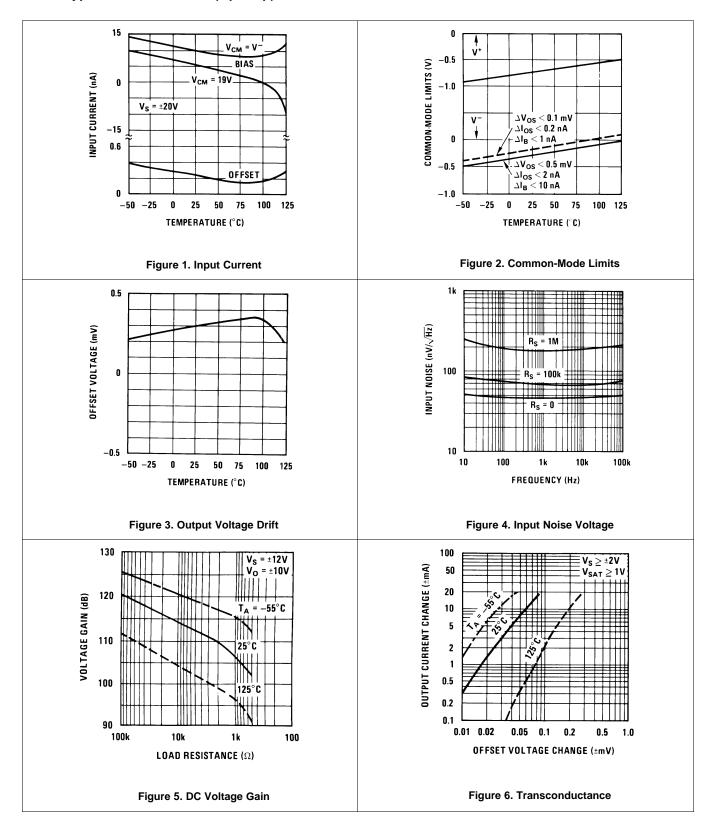
T_J=25°C unless otherwise specified. (1)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input offset voltege	T _J =25°C		0.5	4	mV
Input offset voltage	$T_{MIN} \le T_{J} \le T_{MAX}$ (see ⁽¹⁾)			5	mV
Input offset current ⁽²⁾	T _J =25°C		0.2	2	nA
input onset current(=)	$T_{MIN} \le T_{J} \le T_{MAX}$ (see ⁽¹⁾)			3	nA
Innut hing gurrant	T _J =25°C		12	30	nA
Input bias current	$T_{MIN} \le T_{J} \le T_{MAX}$ (see ⁽¹⁾)			40	nA
Input registence	T _J =25°C	150	400		kΩ
Input resistance	$T_{MIN} \le T_{J} \le T_{MAX}$ (see ⁽¹⁾)	115			kΩ
	$V_S = \pm 3.25 \text{ V}, I_{OUT} = 0$	40	300		V/mV
	$V_{OUT} = \pm 3.2 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	25			V/mV
Large signal voltage gain	$V_S = \pm 3.25 \text{ V}, I_{OUT} = 10 \text{ mA}$	5	25		V/mV
	$V_{OUT} = \pm 2.75 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	3			V/mV
	$V_S = \pm 0.6 \text{ V}, I_{OUT} = \pm 2 \text{ mA}$	1	3		V/mV
	$V_S = 0.65 \text{ V}, I_{OUT} = \pm 2 \text{ mA}, T_{MIN} \le T_J \le T_{MAX} \text{ (see }^{(1)}\text{)}$	1	3		V/mV
	$V_{OUT} = \pm 0.4 \text{ V}, V_{CM} = -0.4 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	0.75			V/mV
	$V_{OUT} = \pm 0.3 \text{ V}, V_{CM} = -0.4 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	0.75			V/mV
Shunt gain ⁽³⁾	$1.5 \text{ V} \le \text{V}^+ \le 6.5 \text{ V}, R_L = 500 \Omega$	6	30		V/mV
Shunt gain 67	$0.1 \text{ mA} \le I_{OUT} \le 10 \text{ mA}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	4			V/mV
	$-3.25 \text{ V} \le \text{V}_{\text{CM}} \le 2.4 \text{ V}$	80	102		dB
Common-mode rejection	$-3.25 \text{ V} \le \text{V}_{\text{CM}} \le 2.25 \text{ V}, \text{T}_{\text{MIN}} \le \text{T}_{\text{J}} \le \text{T}_{\text{MAX}} \text{ (see }^{(1)}\text{)}$	80	102		dB
	$V_S = \pm 3.25 \text{ V}, T_{MIN} \le T_J \le T_{MAX} \text{ (see }^{(1)}\text{)}$	74			dB
	$-0.2 \text{ V} \ge \text{V}^- \ge -5.4 \text{ V}$	80	96		dB
	$V^{+} = 1 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	74			dB
Supply voltage rejection	$V^{+} = 1.2 \text{ V}, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$	74			dB
Supply-voltage rejection	1 V ≤ V ⁺ ≤ 6.3 V	80	106		dB
	$1.1 \text{ V} \le \text{V}^+ \le 6.3 \text{ V}, T_{\text{MIN}} \le T_{\text{J}} \le T_{\text{MAX}} \text{ (see }^{(1)}\text{)}$	80	106		dB
	$V^- = 0.2 \text{ V}, T_{MIN} \le T_J \le T_{MAX} \text{ (see }^{(1)}\text{)}$	74			dB
Offset voltage drift			5		μV/°C
Offset current drift			5		pA/°C
Bias current drift			90		pA/°C

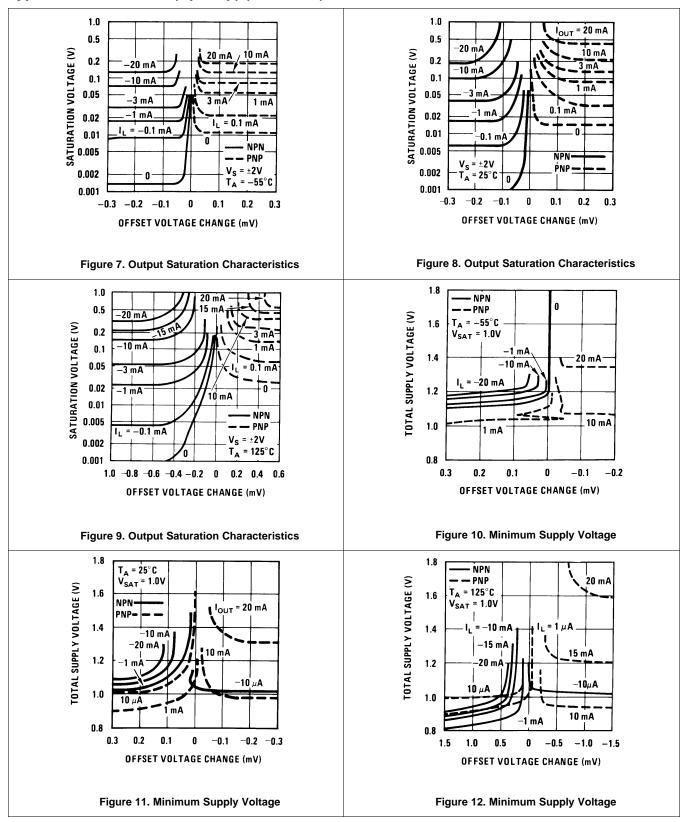
⁽¹⁾ These specifications apply for $V^- \le V_{CM} \le V^+ - 0.85 \text{ V}$, 1 V ($T_{MIN} \le T_J \le T_{MAX}$), 1.2 V, 1.3 V ($T_{MIN} \le T_J \le T_{MAX}$) $< V_S \le V_{MAX}$, $V_{REF} = 0.2 \text{ V}$ and $0 \le I_{REF} \le 1 \text{ mA}$, unless otherwise specified: $V_{MAX} = 40 \text{ V}$ for the standard part and 6.5 V for the low voltage part. The full-temperature-range operation is -55°C to 125°C for the LM10, -25°C to 85°C for the LM10B(L) and 0°C to 70°C for the LM10C(L). The specifications do not include the effects of thermal gradients ($\tau_1 \approx 20$ ms), die heating ($\tau_2 \approx 0.2$ s) or package heating. Gradient effects

are small and tend to offset the electrical error (see curves). For $T_J > 90^{\circ}\text{C}$, I_{OS} may exceed 1.5 nA for $V_{CM} = V^{-}$. With $T_J = 125^{\circ}\text{C}$ and $V^{-} \le V_{CM} \le V^{-} + 0.1 \text{ V}$, $I_{OS} \le 5 \text{ nA}$. This defines operation in floating applications such as the $V_{CM} = V_{CM} = V_{C$ terminal of the IC and input common mode is referred to V⁻ (see System Examples). Effect of larger output-voltage swings with higher load resistance can be accounted for by adding the positive-supply rejection error.

Electrical Characteristics, LM10CL (continued)


T_J=25°C unless otherwise specified. (1)

PARAMETER	TEST C	MIN	TYP	MAX	UNIT	
	1.2 V ≤ V _S ≤ 6.5 V		0.001	0.02	%/V	
Line regulation	$1.3 \text{ V} \le \text{V}_{\text{S}} \le 6.5 \text{ V}, \text{T}_{\text{MIN}} \le \text{T}_{\text{J}} \le \text{T}_{\text{N}}$	_{MAX} (see ⁽¹⁾)		0.001	0.02	%/V
	$0 \le I_{REF} \le 0.5 \text{ mA}, V_{REF} = 200 \text{ m}$	$V, T_{MIN} \le T_{J} \le T_{MAX} \text{ (see }^{(1)}\text{)}$			0.03	%/V
	0 ≤ I _{REF} ≤ 0.5 mA			0.01%	0.15%	
Load regulation	$V^{+}-V_{REF} \ge 1 V, T_{MIN} \le T_{J} \le T_{MAX}$			0.2%		
	$V^{+}-V_{REF} \ge 1.1 \text{ V}, T_{MIN} \le T_{J} \le T_{MJ}$			0.2%		
A man lifting and in	0.07/27/25/57/	T _J =25°C	20	70		V/mV
Amplifier gain	0.2 V ≤ V _{REF} ≤ 5.5 V	$T_{MIN} \le T_J \le T_{MAX}$ (see ⁽¹⁾)	15			V/mV
F	T _J =25°C	190	200	210	mV	
Feedback sense voltage	$T_{MIN} \le T_J \le T_{MAX}$ (see ⁽¹⁾)	189		211	mV	
Facility and a summand	T _J =25°C			22	75	nA
Feedback current	$T_{MIN} \le T_{J} \le T_{MAX}$ (see ⁽¹⁾)			90	nA	
Reference drift			0.003		%/°C	
Complex account	T _J =25°C		280	500	μΑ	
Supply current	$T_{MIN} \le T_{J} \le T_{MAX}$ (see ⁽¹⁾)				570	μΑ



6.8 Typical Characteristics

6.8.1 Typical Characteristics (Op Amp)

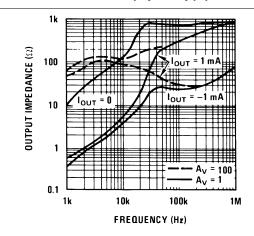


Figure 13. Output Impedance

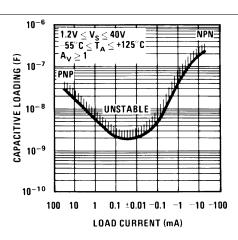


Figure 14. Typical Stability Range

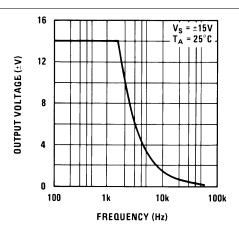


Figure 15. Large Signal Response

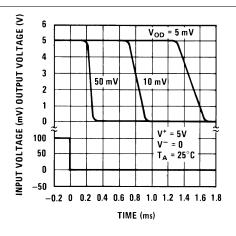


Figure 16. Comparator Response Time For Various Input Overdrives

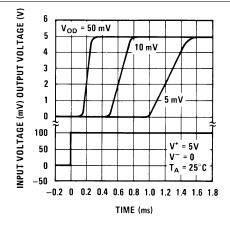


Figure 17. Comparator Response Time For Various Input
Overdrives

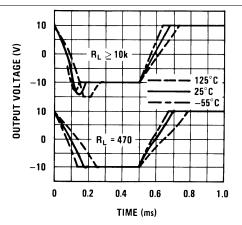
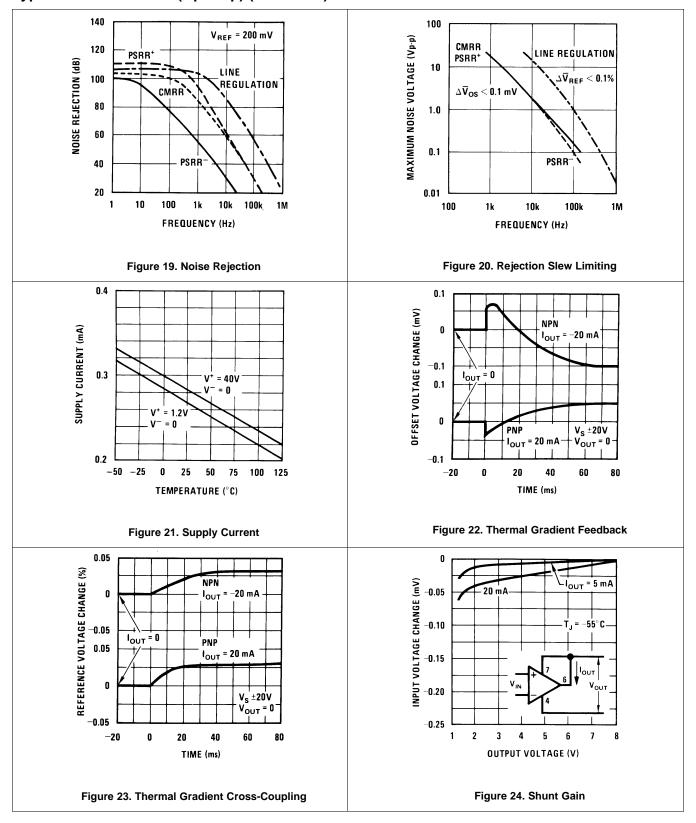
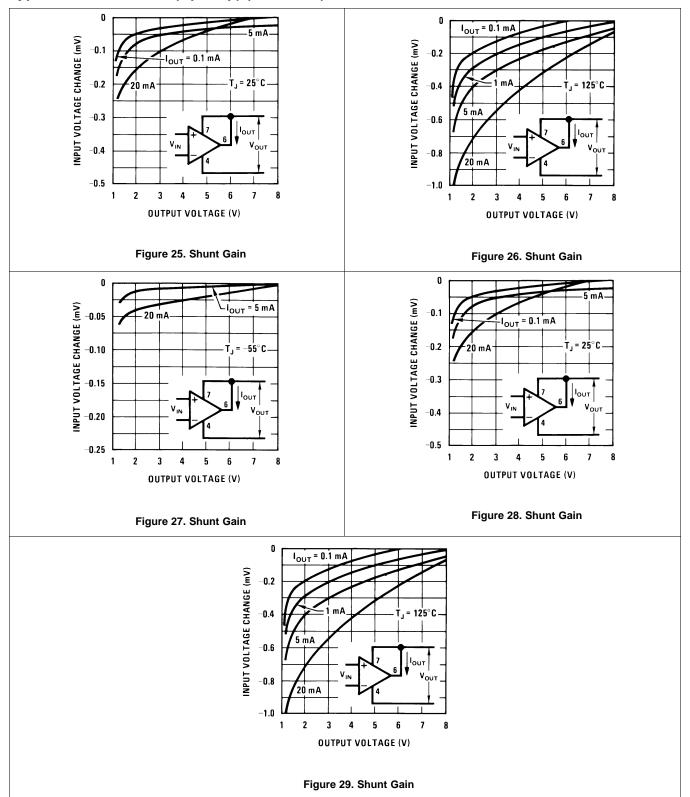
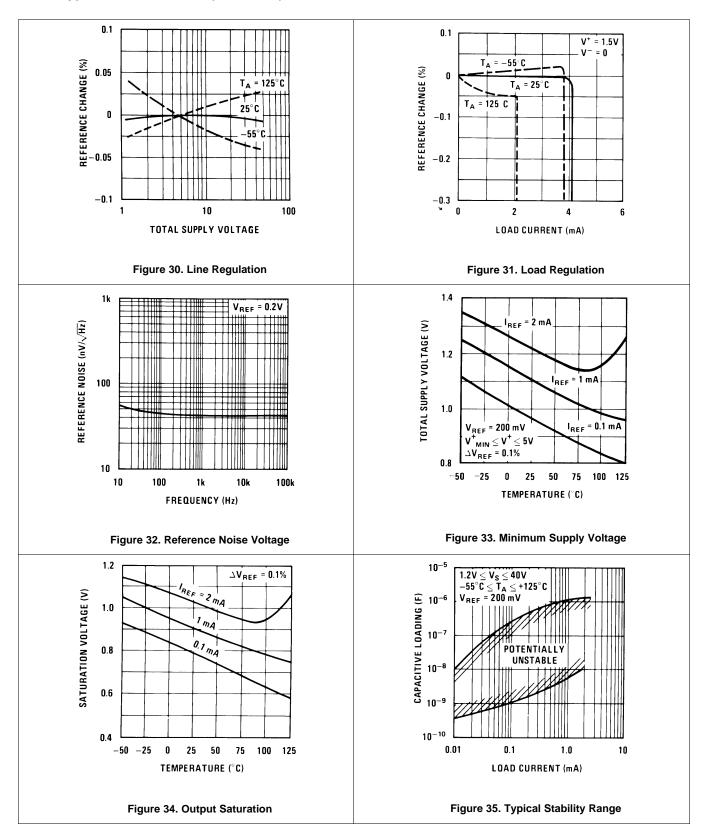




Figure 18. Follower Pulse Response



6.8.2 Typical Characteristics (Reference)

7 Detailed Description

7.1 Overview

The LM10 is a dual-operational amplifier combined with a voltage reference capable of a single-supply operation down to 1.1 V. It provides high overall performance, making it ideal for many general-purpose applications. The circuit can also operate in a floating mode, powered by residual voltage, independent of fixed supplies and it is well-protected from temperature drift.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Operating Characteristics

The LM10 is specified for operation from 1.2 V to 40 V. Many of the specifications apply from –55°C to 125°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in electrical characteristics tables under *Specifications* and in the *Typical Characteristics* section.

7.3.2 Common-Mode Voltage Range

The input common-mode voltage range of the LM10 extends from the negative rail to 0.85 V less than the positive rail.

7.3.3 Operational Amplifier

The minimum operating voltage is reduced to nearly one volt and the current gain is less affected by temperature, resulting in a fairly flat bias current over temperature.

7.3.4 Voltage Reference

Second-order nonlinearities are compensated for which eliminates the bowed characteristics of conventional designs, resulting in better temperature stability.

7.4 Device Functional Modes

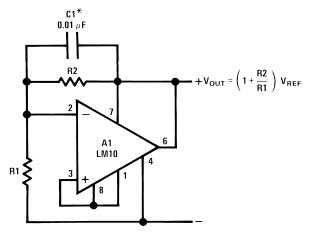
7.4.1 Floating Mode

To use the device in a floating mode, the operational amplifier output is shorted to V+ which disables the PNP portion of the output stage. Thus, with a positive input signal, neither halves of the output conducts and the current between the supply terminals is equal to the quiescent supply current. With negative input signals, the NPN portion of the output begins to turn on, reaching the short circuit current for a few hundred microvolts overdrive.

7.4.2 Linear Operation

This device can also operate linearly while in the floating mode. An example of this is shown in the *Typical Application* section.

8 Application and Implementation


NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

With heavy amplifier loading to V^- , resistance drops in the V^- lead can adversely affect reference regulation. Lead resistance can approach 1 Ω . Therefore, the common to the reference circuitry should be connected as close as possible to the package.

8.2 Typical Application

^{*} required for capacitive loading

Figure 36. Shunt Voltage Regulator

8.2.1 Design Requirements

Table 1 lists the design parameters for this example.

Table 1. Design Parameters

DESIGN PARAMETERS	EXAMPLE VALUE
Ambient Temperature Range	-55°C to 125°C
Supply Voltage Range	1.2 V to 40 V
Common-Mode Input Range	(V-) to (V+) - 0.85 V

8.2.2 Detailed Design Procedure

Given that the transfer function of this circuit is:

$$V_{OUT} = (1 + \frac{R_2}{R_1})V_{REF} \tag{1}$$

the output can be set between 0.2 V and the breakdown voltage of the IC by selecting an appropriate value for R2. The circuit regulates for input voltages within a saturation drop of the output (typically 0.4 V at 20 mA and 0.15 V at 5 mA). The regulator is protected from shorts or overloads by current limiting and thermal shutdown.

Typical regulation is about 0.05% load and 0.003%/V line. A substantial improvement in regulation can be effected by connecting the operational amplifier as a follower and setting the reference to the desired output voltage. This has the disadvantage that the minimum input-output differential is increased to a little more than a diode drop. If the operational amplifier were connected for a gain of 2, the output could again saturate. But this requires an additional pair of precision resistors.

The regulator in Figure 36 could be made adjustable to zero by connecting the operational amplifier to a potentiometer on the reference output. This has the disadvantage that the regulation at the lower voltage settings is not as good as it might otherwise be.

8.2.3 Application Curve

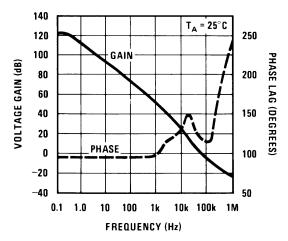


Figure 37. Frequency Response

8.3 System Examples

Circuit descriptions available in application note AN-211 (SNOA638).

8.3.1 Operational Amplifier Offset Adjustment

(Pin numbers are for 8-pin packages)

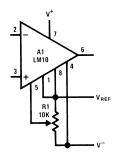


Figure 38. Standard

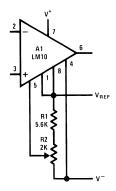


Figure 39. Limited Range

(Pin numbers are for 8-pin packages)

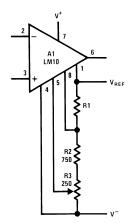


Figure 40. Limited Range With Boosted Reference

8.3.2 Positive Regulators

(Pin numbers are for 8-pin packages)

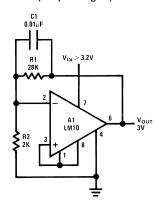


Figure 41. Low Voltage

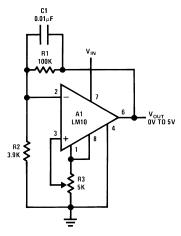
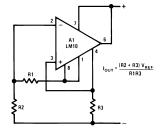



Figure 42. Best Regulation

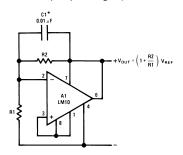

Use only electrolytic output capacitors.

Figure 43. Zero Output

Figure 44. Current Regulator

(Pin numbers are for 8-pin packages)

Required For Capacitive Loading

Figure 45. Shunt Regulator

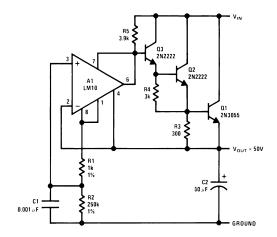
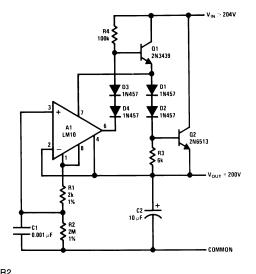
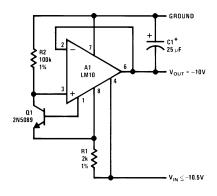




Figure 47. Precision Regulator

 $V_{OUT} = \frac{R2}{R1} V_{REF}$

Figure 49. HV Regulator

*Electrolytic

Figure 46. Negative Regulator

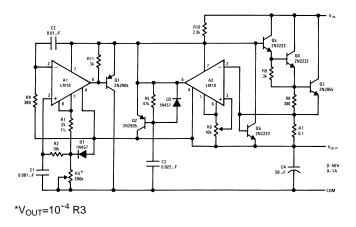


Figure 48. Laboratory Power Supply

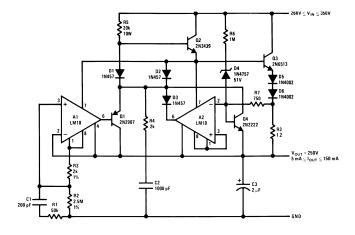
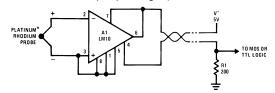



Figure 50. Protected HV Regulator

(Pin numbers are for 8-pin packages)

*800°C Threshold Is Established By Connecting Balance To V_{REF} .

*Provides Hysteresis

Figure 51. Flame Detector

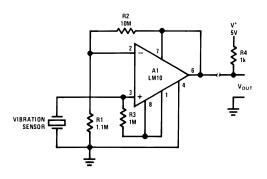


Figure 52. Light Level Sensor

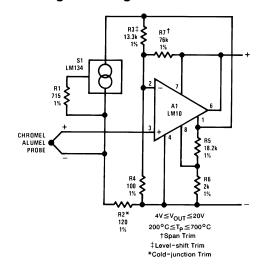


Figure 53. Remote Amplifier

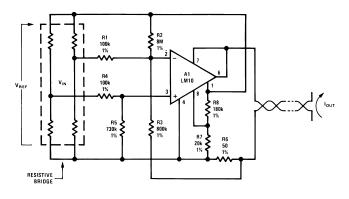
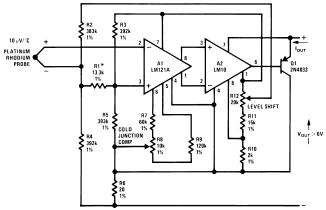
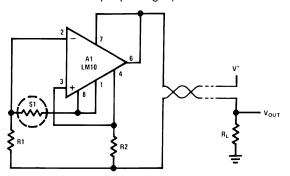



Figure 54. Remote Thermocouple Amplifier


10 mA≤I_{OUT}≤50 mA 500°C≤T_P≤1500°C *Gain Trim

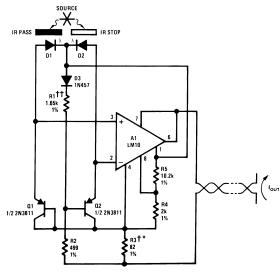
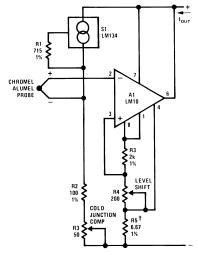

Figure 55. Transmitter for Bridge Sensor

Figure 56. Precision Thermocouple Transmitter

(Pin numbers are for 8-pin packages)

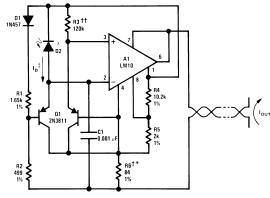
††Level-shift Trim


*Scale Factor Trim

†Copper Wire Wound

1 mA \leq I_{OUT} \leq 5 mA

 $0.01 \le \frac{I_{D2}}{I_{D1}} \le 100$


Figure 57. Resistance Thermometer Transmitter

 $200^{\circ}C \le T_p \le 700^{\circ}C$ 1 mA $\le I_{OUT} \le 5$ mA †Gain Trim

Figure 59. Thermocouple Transmitter

Figure 58. Optical Pyrometer

1 mA≤l_{OUT}≤5 mA

‡50 μA≤I_D≤500 μA

††Center Scale Trim

†Scale Factor Trim

*Copper Wire Wound

Figure 60. Logarithmic Light Sensor

(Pin numbers are for 8-pin packages)

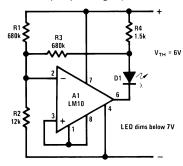
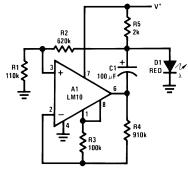



Figure 61. Battery-level Indicator

Flashes Above 1.2V Rate Increases With Voltage

Figure 63. Single-cell Voltage Monitor

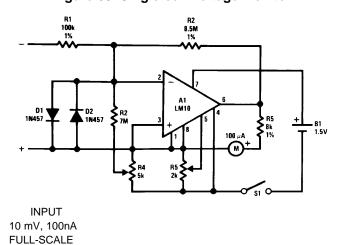


Figure 65. Meter Amplifier

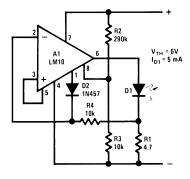
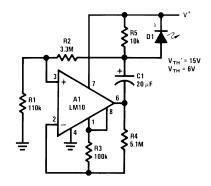
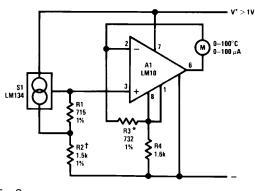




Figure 62. Battery-threshold Indicator

Flash Rate Increases Above 6V and Below 15V

Figure 64. Double-ended Voltage Monitor

*Trim For Span †Trim For Zero

Figure 66. Thermometer

(Pin numbers are for 8-pin packages)

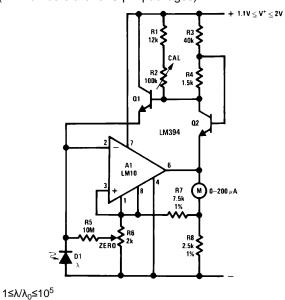
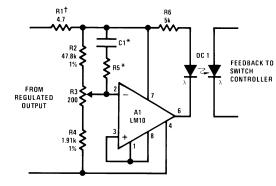
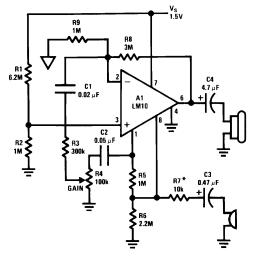




Figure 67. Light Meter

†Controls "Loop Gain"

Figure 69. Isolated Voltage Sensor

Z_{OUT}~680Ω @ 5 kHz

A_V≤1k

f₁~100 Hz

f₂~5 kHz

R_L~500

*Max Gain Trim

Figure 68. Microphone Amplifier

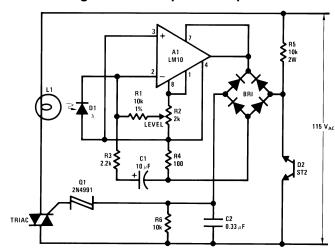


Figure 70. Light-Level Controller

^{*}Optional Frequency Shaping

(Pin numbers are for 8-pin packages)

8.3.3 Reference and Internal Regulator

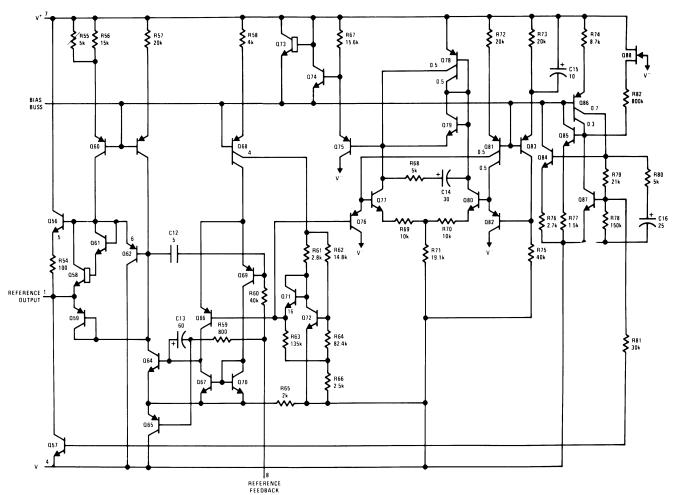


Figure 71. Reference and Internal Regulator

9 Power Supply Recommendations

The LM10 is specified for operation from 1.2 V to 40 V unless otherwise stated. Many specifications apply from –55°C to 125°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in the *Specifications* section.

CAUTION

Supply voltages larger than 40 V can permanently damage the device; see the *Absolute Maximum Ratings* table.

10 Layout

10.1 Layout Guidelines

For best operational performance of the device, good printed-circuit board (PCB) layout practices are recommended. Low-loss, 0.1-uF bypass capacitors should be connected between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable to single-supply applications.

10.2 Layout Example

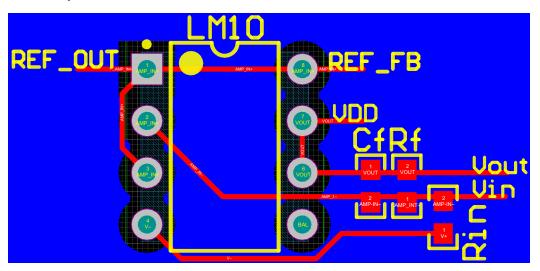


Figure 72. Layout Example

11 Device and Documentation Support

11.1 Device Support

11.1.1 Device Nomenclature

11.1.1.1 Definition of Terms

Input offset voltage: That voltage which must be applied between the input terminals to bias the unloaded output in the linear region.

Input offset current: The difference in the currents at the input terminals when the unloaded output is in the linear region.

Input bias current: The absolute value of the average of the two input currents.

Input resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

Large signal voltage gain: The ratio of the specified output voltage swing to the change in differential input voltage required to produce it.

Shunt gain: The ratio of the specified output voltage swing to the change in differential input voltage required to produce it with the output tied to the V⁺ terminal of the IC. The load and power source are connected between the V⁺ and V⁻ terminals, and input common-mode is referred to the V⁻ terminal.

Common-mode rejection: The ratio of the input voltage range to the change in offset voltage between the extremes.

Supply-voltage rejection: The ratio of the specified supply-voltage change to the change in offset voltage between the extremes.

Line regulation: The average change in reference output voltage over the specified supply voltage range.

Load regulation: The change in reference output voltage from no load to that load specified.

Feedback sense voltage: The voltage, referred to V⁻, on the reference feedback terminal while operating in regulation.

Reference amplifier gain: The ratio of the specified reference output change to the change in feedback sense voltage required to produce it.

Feedback current: The absolute value of the current at the feedback terminal when operating in regulation.

Supply current: The current required from the power source to operate the amplifier and reference with their outputs unloaded and operating in the linear range.

11.2 Documentation Support

11.2.1 Related Documentation

For related documentation, see the following: AN-211 New Op Amp Ideas, SNOA638

11.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

28

11.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

8-Aug-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LM10BH	ACTIVE	TO-99	LMC	8	500	TBD	Call TI	Call TI	-40 to 85	(LM10BH ~ LM10BH)	Samples
LM10BH/NOPB	ACTIVE	TO-99	LMC	8	500	Green (RoHS & no Sb/Br)	Call TI	Level-1-NA-UNLIM	-40 to 85	(LM10BH ~ LM10BH)	Samples
LM10CH	ACTIVE	TO-99	LMC	8	500	TBD	Call TI	Call TI	0 to 70	(LM10CH ~ LM10CH)	Samples
LM10CH/NOPB	ACTIVE	TO-99	LMC	8	500	Green (RoHS & no Sb/Br)	Call TI	Level-1-NA-UNLIM	0 to 70	(LM10CH ~ LM10CH)	Samples
LM10CLN/NOPB	ACTIVE	PDIP	Р	8	40	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	0 to 70	LM10CLN	Samples
LM10CN/NOPB	ACTIVE	PDIP	Р	8	40	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	0 to 70	LM 10CN	Samples
LM10CWM	NRND	SOIC	NPA	14	50	TBD	Call TI	Call TI	0 to 70	LM10CWM	
LM10CWM/NOPB	ACTIVE	SOIC	NPA	14	50	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	0 to 70	LM10CWM	Samples
LM10CWMX/NOPB	ACTIVE	SOIC	NPA	14	1000	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	0 to 70	LM10CWM	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

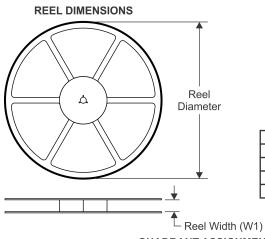
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

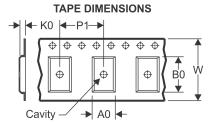
OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

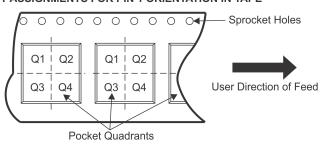
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.


Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.


Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

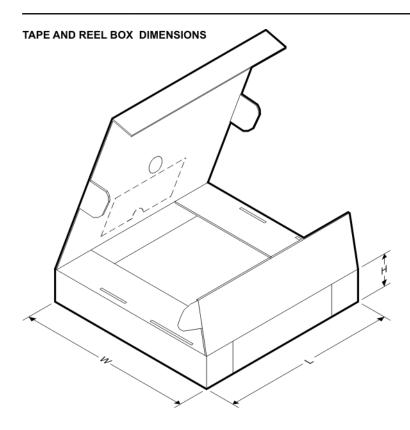
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

10-Aug-2015


TAPE AND REEL INFORMATION

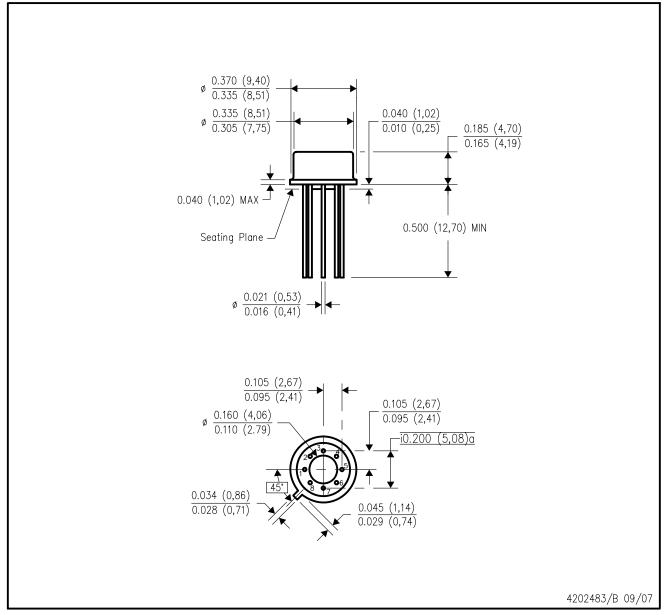
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	_	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM10CWMX/NOPB	SOIC	NPA	14	1000	330.0	16.4	10.9	9.5	3.2	12.0	16.0	Q1

10-Aug-2015

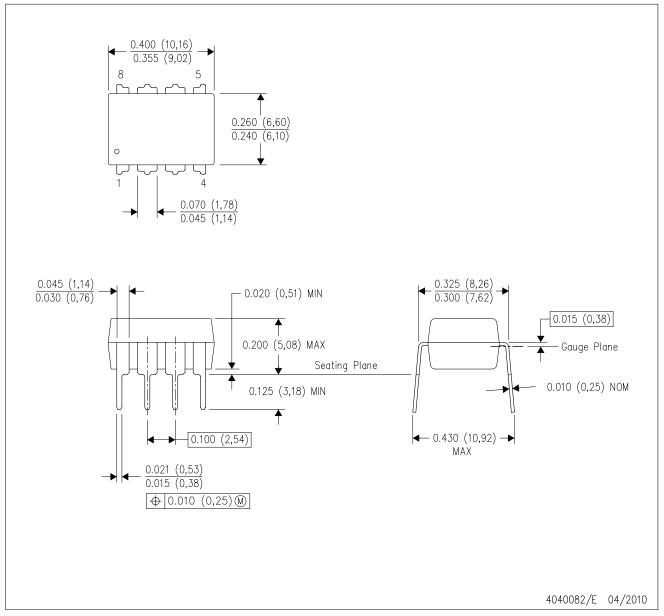


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM10CWMX/NOPB	SOIC	NPA	14	1000	367.0	367.0	38.0

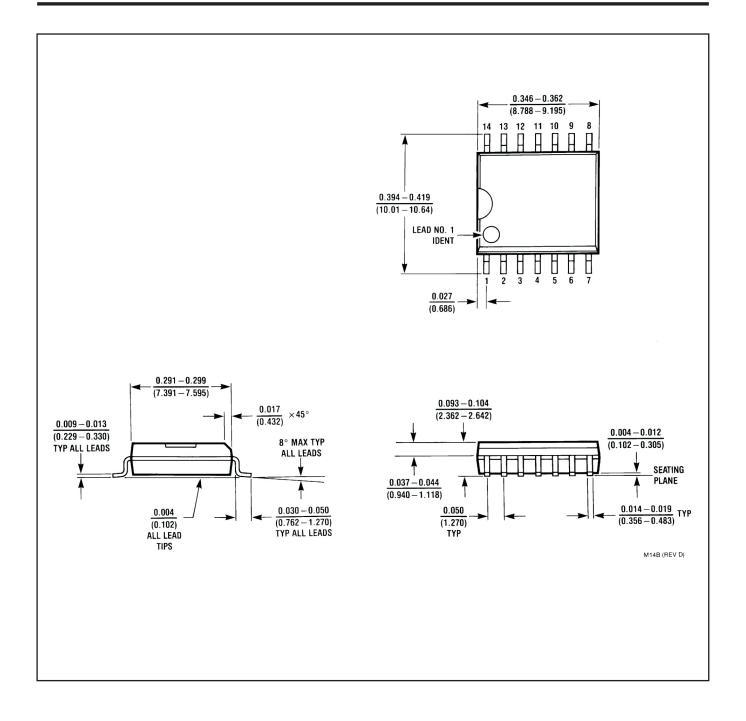
LMC (O-MBCY-W8)

METAL CYLINDRICAL PACKAGE



NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Leads in true position within 0.010 (0,25) R @ MMC at seating plane.
- D. Pin numbers shown for reference only. Numbers may not be marked on package.
- E. Falls within JEDEC MO-002/TO-99.


P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

