

February 1995

LM566C Voltage Controlled Oscillator

General Description

The LM566CN is a general purpose voltage controlled oscillator which may be used to generate square and triangular waves, the frequency of which is a very linear function of a control voltage. The frequency is also a function of an external resistor and capacitor.

The LM566CN is specified for operation over the 0°C to

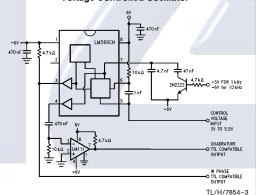
+70°C temperature range.

Features

- Wide supply voltage range: 10V to 24V
- Very linear modulation characteristics

- High temperature stability
- Excellent supply voltage rejection
- 10 to 1 frequency range with fixed capacitor
- Frequency programmable by means of current, voltage, resistor or capacitor

Applications


- FM modulation
- Signal generation
- Function generation
- Frequency shift keying
- Tone generation

Connection Diagram

Dual-In-Line Package SCHMITT TRIGGER TIMING CAPACITOR CURRENT TIMING RESISTOR MODULATION INPUT TRIANGLE WAVE DUTPUT T_{LM566CN} TI /H/7854-2 Order Number LM566CN See NS Package Number N08E

Typical Application

1 kHz and 10 kHz TTL Compatible Voltage Controlled Oscillator

Electrónica S.A. de C.

© 1995 National Semiconductor Corporation

RRD-B30M115/Printed in U. S. A.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{lll} \mbox{Power Supply Voltage} & 26\mbox{V} \\ \mbox{Power Dissipation (Note 1)} & 1000\mbox{ mW} \\ \mbox{Operating Temperature Range, LM566CN} & 0^{\circ}\mbox{C to } +70^{\circ}\mbox{C} \\ \mbox{Lead Temperature (Soldering, 10 sec.)} & +260^{\circ}\mbox{C} \end{array}$

Electrical Characteristics $V_{CC} = 12V$, $T_A = 25$ °C, AC Test Circuit

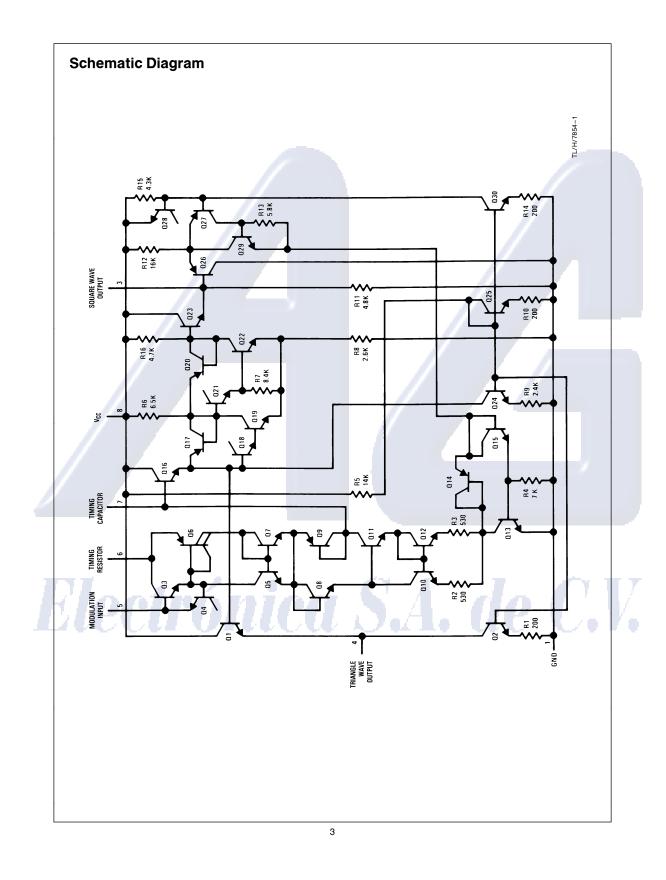
Parameter	Conditions	LM566C			Units
		Min	Тур	Max	Jillis
Maximum Operating Frequency	R0 = 2k C0 = 2.7 pF	0.5	1		MHz
VCO Free-Running Frequency	$C_O = 1.5 \text{ nF}$ $R_O = 20k$ $f_O = 10 \text{ kHz}$	-30	0	+30	%
Input Voltage Range Pin 5		3/4 V _{CC}		V _{CC}	
Average Temperature Coefficient of Operating Frequency			200	/	ppm/°C
Supply Voltage Rejection	10-20V		0.1	2	%/V
Input Impedance Pin 5		0.5	1/		$M\Omega$
VCO Sensitivity	For Pin 5, From $8-10V$, $f_O = 10 \text{ kHz}$	6.0	6.6	7.2	kHz/V
FM Distortion	±10% Deviation		0.2	1.5	%
Maximum Sweep Rate			1		MHz
Sweep Range			10:1		
Output Impedance Pin 3			50		Ω
Pin 4			50		Ω
Square Wave Output Level	R _{L1} = 10k	5.0	5.4		Vp-p
Triangle Wave Output Level	$R_{L2} = 10k$	2.0	2.4		Vp-p
Square Wave Duty Cycle		40	50	60	%
Square Wave Rise Time	2 .	400	20		ns
Square Wave Fall Time	A BARA	-	50	- 4	ns
Triangle Wave Linearity	+ 1V Segment at 1/2 V _{CC}		0.5	, U	%

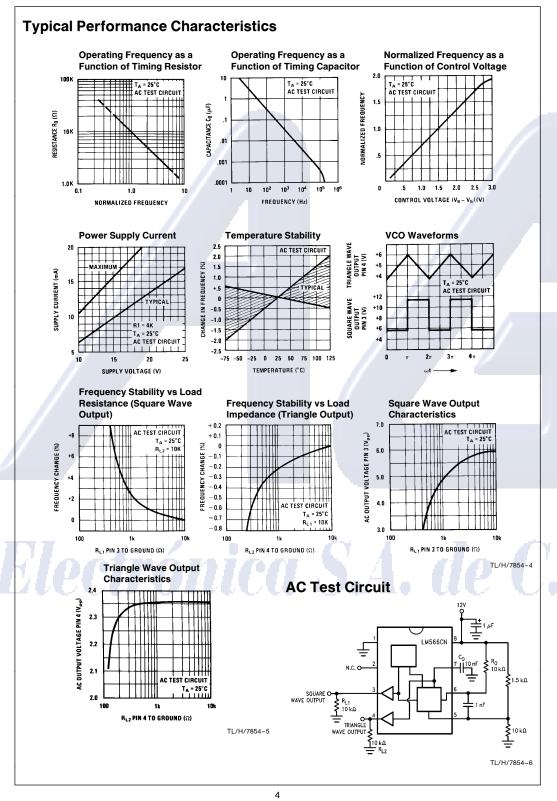
Note 1: The maximum junction temperature of the LM566CN is 150°C. For operation at elevated junction temperatures, maximum power dissipation must be derated based on a thermal resistance of 115°C/W, junction to ambient.

Applications Information

The LM566CN may be operated from either a single supply as shown in this test circuit, or from a split (\pm) power supply. When operating from a split supply, the square wave output (pin 3) is TTL compatible (2 mA current sink) with the addition of a 4.7 k Ω resistor from pin 3 to ground.

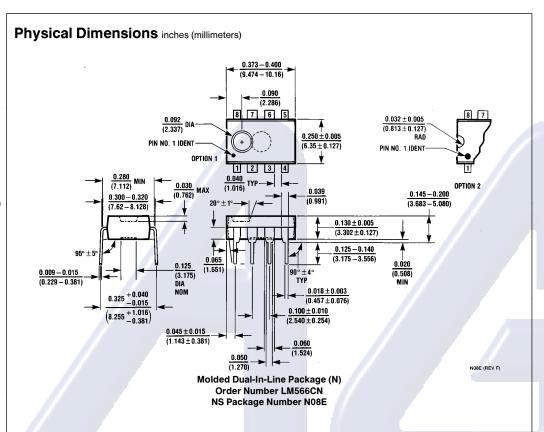
A 0.001 μF capacitor is connected between pins 5 and 6 to prevent parasitic oscillations that may occur during VCO switching.


$$f_O = \frac{2.4(V^+ - V_5)}{R_O \, C_O \, V^+}$$


where

 $\rm 2K < R_O < 20K$

and V_5 is voltage between pin 5 and pin 1.


2

-

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications