Preferred Device

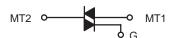
Triacs

Silicon Bidirectional Thyristors

Designed primarily for full-wave ac control applications such as lighting systems, heater controls, motor controls and power supplies.

- Blocking Voltage to 800 Volts
- All Diffused and Glass-Passivated Junctions for Parameter Uniformity and Stability
- Gate Triggering Guaranteed in Four Modes
- High Current and Surge Ratings
- Device Marking: Logo, Device Type, e.g., MAC224A4, Date Code

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)


Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage ⁽¹⁾ (T _J = -40 to 125°C, Sine Wave 50 to 60 Hz, Gate Open) MAC224A4	VDRM, VRRM	200	Volts
MAC224A6 MAC224A8 MAC224A10		400 600 800	
On–State RMS Current (T _C = 75°C)(2) (Full Cycle Sine Wave 50 to 60 Hz)	IT(RMS)	40	А
Peak Non–repetitive Surge Current (One Full Cycle, 60 Hz, T _J = 125°C)	ITSM	350	Α
Circuit Fusing Considerations (t = 8.3 ms)	I ² t	500	A ² s
Peak Gate Current (Pulse Width $\leq 2.0 \mu \text{sec}; T_C = 75^{\circ}\text{C}$)	I _{GM}	±2.0	A
Peak Gate Voltage (Pulse Width $\leq 2.0 \mu \text{sec}$; T _C = 75°C)	VGМ	±10	Volts
Peak Gate Power (Pulse Width $\leq 2.0 \mu \text{sec}$; T _C = 75°C)	PGM	20	Watts
Average Gate Power (T _C = 75°C, t = 8.3 ms)	P _G (AV)	0.5	Watts
Operating Junction Temperature Range	TJ	-40 to 125	°C
Storage Temperature Range	T _{stg}	-40 to 150	°C
Mounting Torque	_	8.0	in. lb.


- (1) VDRM, VRRM for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.
- (2) This device is rated for use in applications subject to high surge conditions. Care must be taken to insure proper heat sinking when the device is to be used at high sustained currents. (See Figure 1 for maximum case temperatures.)

TRIACS 40 AMPERES RMS

200 thru 800 VOLTS

TO-220AB CASE 221A STYLE 4

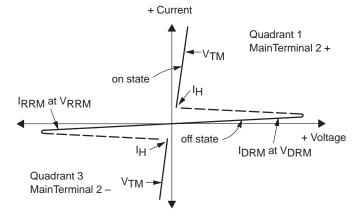
PIN ASSIGNMENT		
1	Main Terminal 1	
2	Main Terminal 2	
3	Gate	
4	Main Terminal 2	

ORDERING INFORMATION

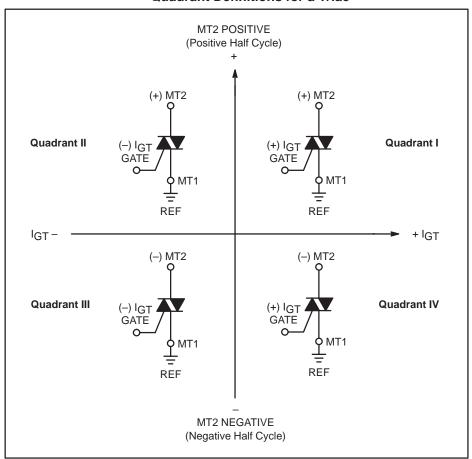
Device	Package	Shipping
MAC224A4	TO220AB	500/Box
MAC224A6	TO220AB	500/Box
MAC224A8	TO220AB	500/Box
MAC224A10	TO220AB	500/Box

Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction to Case — Junction to Ambient	R _θ JC R _θ JA	1.0 60	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	TL	260	°C

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted; Electricals apply in both directions)


Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	Oymbor	IVIIII	136	IVIGA	Onic
Peak Repetitive Blocking Current (Rated V_{DRM} , V_{RRM} ; Gate Open) $T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$	IDRM, IRRM	_ _ _	_ _	10 2.0	μA mA
ON CHARACTERISTICS					
Peak On–State Voltage $(I_{TM} = \pm 56 \text{ A Peak, Pulse Width} \le 2 \text{ ms, Duty Cycle} \le 2\%)$	V _{TM}	_	1.4	1.85	Volts
Gate Trigger Current (Continuous dc) $ (V_D=12\ V,\ R_L=100\ \Omega) \\ MT2(+),\ G(+);\ MT2(+),\ G(-);\ MT2(+),\ G(-) \\ MT2(-),\ G(+) $	lGT	_	25 40	50 75	mA
Gate Trigger Voltage (Continuous dc) $ (V_D=12\ V,\ R_L=100\ \Omega) \\ MT2(+),\ G(+);\ MT2(-),\ G(-);\ MT(+),\ G(-) \\ MT2(-),\ G(+) $	VGT		1.1 1.3	2.0 2.5	Volts
Gate Non-Trigger Voltage (V_D = 12 V , T_J = 125°C, R_L = 100 Ω) All Quadrants	V _{GD}	0.2	_	_	Volts
Holding Current ($V_D = 12 \text{ Vdc}$, Gate Open, Initiating Current = $\pm 200 \text{ mA}$)	lн	_	30	75	mA
Gate Controlled Turn-On Time (V _D = Rated V _{DRM} , I _{TM} = 56 A Peak, I _G = 200 mA)	t _{gt}		1.5	_	μs
DYNAMIC CHARACTERISTICS	•				
Critical Rate of Rise of Off-State Voltage (VD = Rated VDRM, Exponential Waveform, TC = 125°C)	dv/dt	_	50	_	V/µs
Critical Rate of Rise of Commutation Voltage (V _D = Rated V _{DRM} , I _{TM} = 56 A Peak, Commutating di/dt = 20.2 A/ms, Gate Unenergized, T _C = 75°C)	dv/dt(c)	_	5.0	_	V/µs

Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off State Voltage
IDRM	Peak Forward Blocking Current
VRRM	Peak Repetitive Reverse Off State Voltage
IRRM	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
lΗ	Holding Current

Quadrant Definitions for a Triac

All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used.

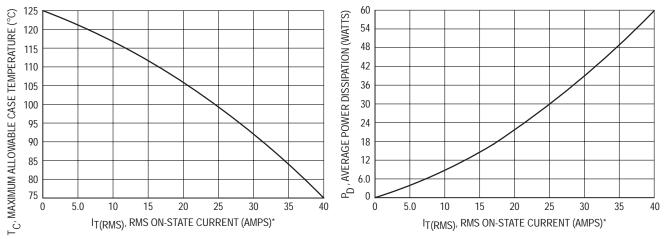


Figure 1. RMS Current Derating

Figure 2. On-State Power Dissipation

^{*}This device is rated for use in applications subject to high surge conditions. Care must be taken to insure proper heat sinking when the device is to be used at high sustained currents.

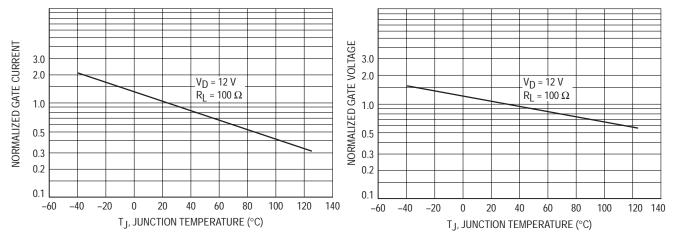


Figure 3. Typical Gate Trigger Current

Figure 4. Typical Gate Trigger Voltage

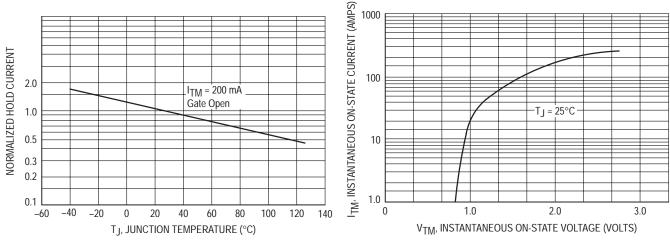


Figure 5. Typical Holding Current

Figure 6. Typical On-State Characteristics

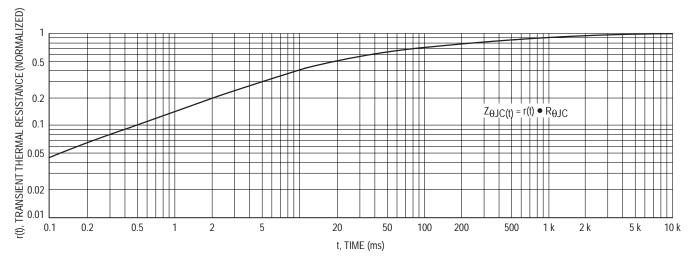
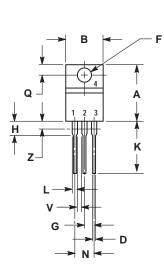
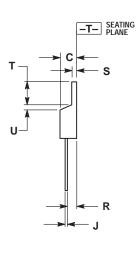




Figure 7. Thermal Response

PACKAGE DIMENSIONS

TO-220AB CASE 221A-07 ISSUE Z

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.014	0.022	0.36	0.55
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

- STYLE 4:
 PIN 1. MAIN TERMINAL 1
 2. MAIN TERMINAL 2
 3. GATE
 4. MAIN TERMINAL 2