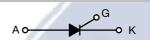
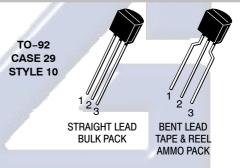
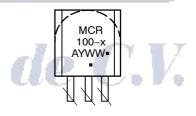
Sensitive Gate Silicon Controlled Rectifiers


Reverse Blocking Thyristors


PNPN devices designed for high volume, line-powered consumer applications such as relay and lamp drivers, small motor controls, gate drivers for larger thyristors, and sensing and detection circuits. Supplied in an inexpensive plastic TO-226AA package which is readily adaptable for use in automatic insertion equipment.

Features

- Sensitive Gate Allows Triggering by Microcontrollers and Other Logic Circuits
- Blocking Voltage to 600 V
- On-State Current Rating of 0.8 A RMS at 80°C
- High Surge Current Capability 10 A
- Minimum and Maximum Values of IGT, VGT and IH Specified for Ease of Design
- Immunity to dV/dt 20 V/μsec Minimum at 110°C
- Glass-Passivated Surface for Reliability and Uniformity
- Pb-Free Packages are Available*


SCRs 0.8 A RMS 100 thru 600 V

MARKING DIAGRAM

Electrónica S.A.

x = Specific Device CodeA = Assembly Location

Y = Year

WW = Work Week
■ = Pb-Free Package

(Note: Microdot may be in either location)

PIN ASSIGNMENT		
1	Cathode	
2	Gate	
3	Anode	

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Notes 1 and 2) $(T_J = -40 \text{ to } 110^{\circ}\text{C}, \text{ Sine Wave, 50 to 60 Hz; R}_{GK} = 1 \text{ k}\Omega) \\ MCR100-3 \\ MCR100-4 \\ MCR100-6 \\ MCR100-8$	V _{DRM} , V _{RRM}	100 200 400 600	V
On-State RMS Current, (T _C = 80°C) 180° Conduction Angles	I _{T(RMS)}	0.8	Α
Peak Non-Repetitive Surge Current, (1/2 Cycle, Sine Wave, 60 Hz, T _J = 25°C)	I _{TSM}	10	Α
Circuit Fusing Consideration, (t = 8.3 ms)	l ² t	0.415	A ² s
Forward Peak Gate Power, (T _A = 25°C, Pulse Width ≤ 1.0 μs)	P _{GM}	0.1	W
Forward Average Gate Power, (T _A = 25°C, t = 8.3 ms)	P _{G(AV)}	0.01	W
Forward Peak Gate Current, (T _A = 25°C, Pulse Width ≤ 1.0 μs)	I _{GM}	1.0	Α
Reverse Peak Gate Voltage, (T _A = 25°C, Pulse Width ≤ 1.0 μs)	V_{GRM}	5.0	V
Operating Junction Temperature Range @ Rate V _{RRM} and V _{DRM}	TJ	-40 to 110	°C
Storage Temperature Range	T _{stg}	-40 to 150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

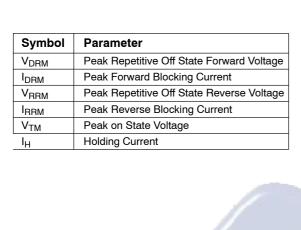
2. See ordering information for exact device number options.

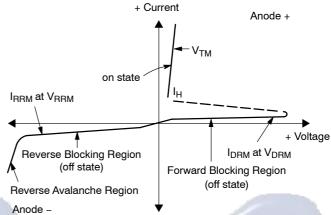
THERMAL CHARACTERISTICS

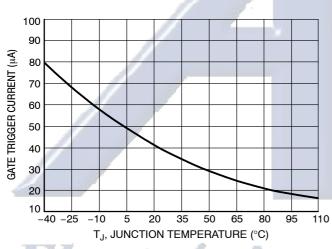
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case Junction-to-Ambient	$R_{ heta JC} \ R_{ heta JA}$	75 200	°C/W
Lead Solder Temperature (<1/16" from case, 10 secs max)	T _L	260	°C

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		-			
Peak Repetitive Forward or Reverse Blocking Current (Note 3) $T_{C}=25^{\circ}C$ $(V_{D}=\text{Rated V}_{DRM}\text{ and V}_{RRM}; R_{GK}=1\text{ k}\Omega) T_{C}=110^{\circ}C$	I _{DRM} , I _{RRM}	ale	-(10 100	μΑ
ON CHARACTERISTICS		-	-	•	-
Peak Forward On–State Voltage* (I _{TM} = 1.0 A Peak @ T _A = 25°C)	V _{TM}	-	-	1.7	V
Gate Trigger Current (Note 4) $T_C = 25^{\circ}C$ $(V_{AK} = 7.0 \text{ Vdc}, R_L = 100 \Omega)$	I _{GT}	-	40	200	μΑ
Holding Current (Note 3) $T_C = 25^{\circ}C$ (V _{AK} = 7.0 Vdc, Initiating Current = 20 mA, R _{GK} = 1 k Ω) $T_C = -40^{\circ}C$	I _H	- -	0.5 -	5.0 10	mA
$ \begin{array}{ll} \text{Latch Current (Note 4)} & & & T_C = 25^{\circ}\text{C} \\ \text{(V}_{AK} = 7.0 \text{ V, } \text{Ig} = 200 \ \mu\text{A)} & & & T_C = -40^{\circ}\text{C} \\ \end{array} $	ΙL	- -	0.6 -	10 15	mA
Gate Trigger Voltage (Note 4) $T_C = 25^{\circ}C$ $(V_{AK} = 7.0 \text{ Vdc}, R_L = 100 \Omega)$ $T_C = -40^{\circ}C$	V _{GT}		0.62 -	0.8 1.2	٧
DYNAMIC CHARACTERISTICS					
Critical Rate of Rise of Off–State Voltage (V_D = Rated V_{DRM} , Exponential Waveform, R_{GK} = 1 k Ω , T_J = 110°C)	dV/dt	20	35	_	V/μs
Critical Rate of Rise of On–State Current (I _{PK} = 20 A; Pw = 10 µsec; diG/dt = 1 A/µsec, lgt = 20 mA)	di/dt	-	-	50	A/μs

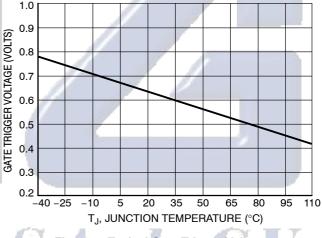

^{*}Indicates Pulse Test: Pulse Width \leq 1.0 ms, Duty Cycle \leq 1%.


V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.


^{3.} R_{GK} = 1000 Ω included in measurement.

^{4.} Does not include R_{GK} in measurement.

Voltage Current Characteristic of SCR



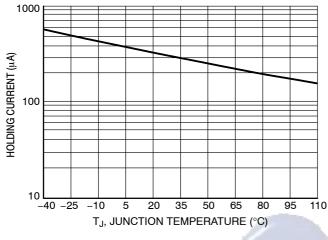
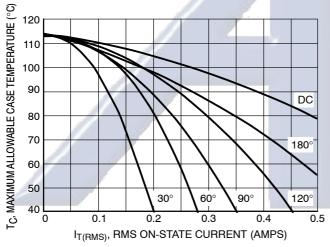

Figure 1. Typical Gate Trigger Current versus
Junction Temperature

Figure 2. Typical Gate Trigger Voltage versus
Junction Temperature

110

MCR100 Series


1000

LATCHING CURRENT (µA) 110 -40 -25 -10 50 20 35 65 T_J, JUNCTION TEMPERATURE (°C)

Figure 3. Typical Holding Current versus **Junction Temperature**

Figure 4. Typical Latching Current versus **Junction Temperature**

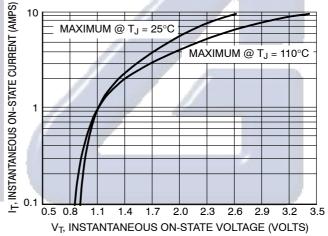
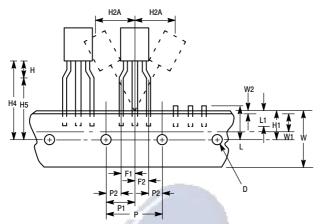


Figure 5. Typical RMS Current Derating

Figure 6. Typical On-State Characteristics


ORDERING INFORMATION

Device	Package Code	Shipping [†]
MCR100-003		
MCR100-004		5000 H. V. / D.
MCR100-006		5000 Units / Box
MCR100-008		
MCR100-3RL	TO 00 (TO 000)	
MCR100-6RL	TO-92 (TO-226)	2000 / Tape & Reel
MCR100-6RLRA		
MCR100-6RLRM		2000 / T
MCR100-6ZL1		2000 / Tape & Ammo Pack
MCR100-8RL		2000 / Tape & Reel
MCR100-3G		//
MCR100-4G		5000 H.W. (P.
MCR100-6G		5000 Units / Box
MCR100-8G	7	
MCR100-3RLG		
MCR100-6RLG	TO-92 (TO-226) (Pb-Free)	2000 / Tape & Reel
MCR100-6RLRAG	(121100)	
MCR100-4RLRMG		
MCR100-6RLRMG		2000 / Tape & Ammo Pack
MCR100-6ZL1G		
MCR100-8RLG		2000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Electrónica S.A. de C.V.

TO-92 EIA RADIAL TAPE IN BOX OR ON REEL

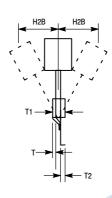
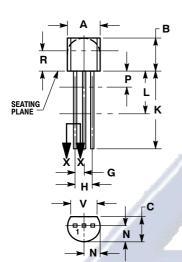


Figure 7. Device Positioning on Tape


		Specification				
		Inc	Inches		Millimeter	
Symbol	Item	Min	Max	Min	Max	
D	Tape Feedhole Diameter	0.1496	0.1653	3.8	4.2	
D2	Component Lead Thickness Dimension	0.015	0.020	0.38	0.51	
F1, F2	Component Lead Pitch	0.0945	0.110	2.4	2.8	
Н	Bottom of Component to Seating Plane	.059	.156	1.5	4.0	
H1	Feedhole Location	0.3346	0.3741	8.5	9.5	
H2A	Deflection Left or Right	0	0.039	0	1.0	
H2B	Deflection Front or Rear	0	0.051	0	1.0	
H4	Feedhole to Bottom of Component	0.7086	0.768	18	19.5	
H5	Feedhole to Seating Plane	0.610	0.649	15.5	16.5	
L	Defective Unit Clipped Dimension		0.433	8.5	11	
L1	Lead Wire Enclosure		_	2.5	_	
P	Feedhole Pitch		0.5079	12.5	12.9	
P1	Feedhole Center to Center Lead	0.2342	0.2658	5.95	6.75	
P2	First Lead Spacing Dimension		0.1556	3.55	3.95	
Т	Adhesive Tape Thickness		0.08	0.15	0.20	
T1	Overall Taped Package Thickness		0.0567		1.44	
T2	Carrier Strip Thickness		0.027	0.35	0.65	
W	Carrier Strip Width		0.7481	17.5	19	
W1	Adhesive Tape Width		0.2841	5.5	6.3	
W2	Adhesive Tape Position		0.01968	.15	0.5	

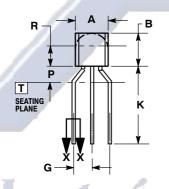
NOTES:

- 1. Maximum alignment deviation between leads not to be greater than 0.2 mm.
- 2. Defective components shall be clipped from the carrier tape such that the remaining protrusion (L) does not exceed a maximum of 11 mm.
- 3. Component lead to tape adhesion must meet the pull test requirements.
- 4. Maximum non-cumulative variation between tape feed holes shall not exceed 1 mm in 20 pitches.
- 5. Hold down tape not to extend beyond the edge(s) of carrier tape and there shall be no exposure of adhesive.
- 6. No more than 1 consecutive missing component is permitted.
- 7. A tape trailer and leader, having at least three feed holes is required before the first and after the last component.
- 8. Splices will not interfere with the sprocket feed holes.

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 **ISSUE AM**

STRAIGHT LEAD **BULK PACK**


- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- Y14.5M, 1982.

 CONTOULING DIMENSION: INCH.

 CONTOUR OF PACKAGE BEYOND DIMENSION R
 IS UNCONTROLLED.

 LEAD DIMENSION IS UNCONTROLLED IN P AND
 BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
P		0.100	4	2.54
R	0.115	4	2.93	
٧	0.135		3.43	

BENT LEAD TAPE & REEL **AMMO PACK**

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.

- LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	MILLIMETERS		
DIM	MIN	MAX	
Α	4.45	5.20	
В	4.32	5.33	
C	3.18	4.19	
D	0.40	0.54	
G	2.40	2.80	
J	0.39	0.50	
K	12.70		
N	2.04	2.66	
P	1.50	4.00	
R	2.93		
V	3.43	TO - 127	

STYLE 10:

PIN 1. CATHODE 2. GATE 3. ANODE

www.ag .com