Preferred Device

Sensitive Gate Silicon Controlled Rectifiers

Reverse Blocking Thyristors

PNPN devices designed for high volume consumer applications such as temperature, light and speed control; process and remote control, and warning systems where reliability of operation is important.

- Glass-Passivated Surface for Reliability and Uniformity
- Power Rated at Economical Prices
- Practical Level Triggering and Holding Characteristics
- Flat, Rugged, Thermopad Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Device Marking: Device Type, e.g., MCR106-6, Date Code

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage ⁽¹⁾ (T _J = -40 to 110°C, Sine Wave 50 to 60 Hz, Gate Open) MCR106–6 MCR106–8	VDRM, VRRM	400 600	Volts
On-State RMS Current (T _C = 93°C) (180° Conduction Angles)	IT(RMS)	4.0	Amps
Average On–State Current (180° Conduction Angles; T _C = 93°C)	l _{T(AV)}	2.55	Amps
Peak Non-repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, T _J = 110°C)	ITSM	25	Amps
Circuit Fusing Considerations (t = 8.3 ms)	I ² t	2.6	A ² s
Forward Peak Gate Power (T _C = 93°C, Pulse Width ≤ 1.0 μs)	PGM	0.5	Watt
Forward Average Gate Power (T _C = 93°C, t = 8.3 ms)	PG(AV)	0.1	Watt
Forward Peak Gate Current $(T_C = 93^{\circ}C, \text{ Pulse Width } \leq 1.0 \mu\text{s})$	I _{GM}	0.2	Amp
Peak Reverse Gate Voltage $(T_C = 93^{\circ}C, \text{ Pulse Width } \leq 1.0 \mu\text{s})$	i itom		Volts
Operating Junction Temperature Range	TJ	-40 to +110	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C
Mounting Torque ⁽²⁾		6.0	in. lb.

- (1) VDRM and VRRM for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.
- (2) Torque rating applies with use of compression washer (B52200-F006 or equivalent). Mounting torque in excess of 6 in. lb. does not appreciably lower case-to-sink thermal resistance. Anode lead and heatsink contact pad are common. (See AN209B). For soldering purposes (either terminal connection or device mounting), soldering temperatures shall not exceed +200°C. For optimum results, an activated flux (oxide removing) is recommended.

ON Semiconductor

http://onsemi.com

SCRs 4 AMPERES RMS 400 thru 600 VOLTS

TO-225AA (formerly TO-126) CASE 077 STYLE 2

PIN ASSIGNMENT			
1	Cathode		
2	Anode		
3	Gate		

ORDERING INFORMATION

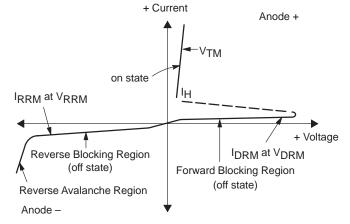
Device	Package	Shipping
MCR106-6	TO225AA	500/Box
MCR106-8	TO225AA	500/Box

Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	3.0	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	75	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	TL	260	°C

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)


Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•	•		•	
Peak Repetitive Forward or Reverse Blocking Current (VAK = Rated VDRM or VRRM; RGK = 1000 Ohms) $T_J = 25^{\circ}C$ $T_J = 110^{\circ}C$	IDRM, IRRM		_	10 200	μA μA
ON CHARACTERISTICS					
Peak Forward On–State Voltage ⁽¹⁾ (I _{TM} = 4 A Peak)	Vтм	_	_	2.0	Volts
Gate Trigger Current (Continuous dc) ⁽²⁾ $(V_{AK} = 7 \text{ Vdc, R}_{L} = 100 \text{ Ohms})$ $(T_{C} = -40^{\circ}\text{C})$	l _{GT}	_	_	200 500	μА
Gate Trigger Voltage (Continuous dc) ⁽²⁾ (V _{AK} = 7 Vdc, R _L = 100 Ohms)	VGT	_	_	1.0	Volts
Gate Non-Trigger Voltage ⁽²⁾ (V _{AK} = 12 Vdc, R _L = 100 Ohms, T _J = 110°C)	V _{GD}	0.2	_	_	Volts
Holding Current (VAK = 7 Vdc, Initiating Current = 200 mA, Gate Open)	lн	_	_	5.0	mA
DYNAMIC CHARACTERISTICS					
Critical Rate-of-Rise of Off-State Voltage (T _J = 110°C)	dv/dt	_	10	_	V/μs

⁽¹⁾ Pulse Test: Pulse Width ≤ 1.0 ms, Duty Cycle ≤ 1%.

⁽²⁾ RGK current is not included in measurement.

Voltage Current Characteristic of SCR

Symbol	Parameter
V _{DRM}	Peak Repetitive Off State Forward Voltage
IDRM	Peak Forward Blocking Current
VRRM	Peak Repetitive Off State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
VTM	Peak On State Voltage
I _H	Holding Current

CURRENT DERATING

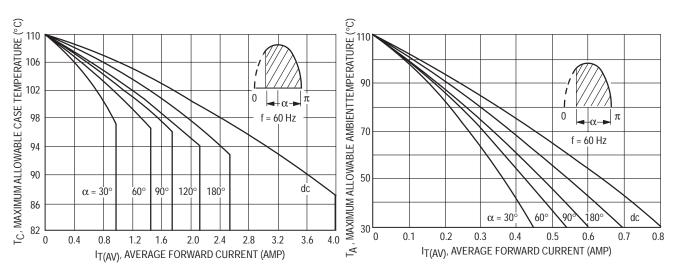
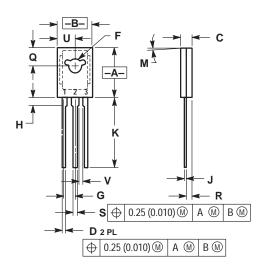



Figure 1. Maximum Case Temperature

Figure 2. Maximum Ambient Temperature

PACKAGE DIMENSIONS

TO-225AA (formerly TO-126) CASE 077-09 ISSUE W

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
 VIA 5M 1992
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.425	0.435	10.80	11.04
В	0.295	0.305	7.50	7.74
С	0.095	0.105	2.42	2.66
D	0.020	0.026	0.51	0.66
F	0.115	0.130	2.93	3.30
G	0.094 BSC		2.39 BSC	
Н	0.050	0.095	1.27	2.41
J	0.015	0.025	0.39	0.63
K	0.575	0.655	14.61	16.63
M	5° TYP		5° TYP	
Q	0.148	0.158	3.76	4.01
R	0.045	0.065	1.15	1.65
S	0.025	0.035	0.64	0.88
U	0.145	0.155	3.69	3.93
V	0.040		1.02	

STYLE 2: PIN 1.

N 1. CATHODE 2. ANODE 3. GATE

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (M-F 1:00pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore: 001–800–4422–3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

MCR106/D