MJ15022 (NPN), MJ15024 (NPN)

Silicon Power Transistors

The MJ15022 and MJ15024 are power transistors designed for high power audio, disk head positioners and other linear applications.

Features

- High Safe Operating Area
- High DC Current Gain
- These Devices are Pb-Free and are RoHS Compliant*
- Complementary to MJ15023 (PNP), MJ15025 (PNP)

MAXIMUM RATINGS

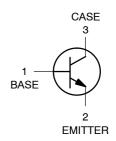
Rating	Symbol	Value	Unit
Collector–Emitter Voltage MJ15022 MJ15024	V _{CEO}	200 250	Vdc
Collector-Base Voltage MJ15022 MJ15024	V _{CBO}	350 400	Vdc
Emitter-Base Voltage	V _{EBO}	5	Vdc
Collector-Emitter Voltage	V _{CEX}	400	Vdc
Collector Current - Continuous	I _C	16	Adc
Collector Current - Peak (Note 1)	I _{CM}	30	Adc
Base Current - Continuous	Ι _Β	5	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	250 1.43	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Pulse Test: Pulse Width = 5 ms, Duty Cycle \leq 10%.

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit	
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.70	°C/W	



ON Semiconductor®

http://onsemi.com

16 AMPERES SILICON POWER TRANSISTORS 200 – 250 VOLTS, 250 WATTS

SCHEMATIC

TO-204AA (TO-3) CASE 1-07 STYLE 1

MARKING DIAGRAM

MJ1502xG AYWW MEX O

MJ1502x = Device Codex = 2 or 4

G = Pb-Free Package A = Assembly Location

Y = Year
WW = Work Week
MEX = Country of Origin

ORDERING INFORMATION

Device	Package	Shipping
MJ15022G	TO-204 (Pb-Free)	100 Units / Tray
MJ15024G	TO-204 (Pb-Free)	100 Units / Tray

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

August, 2013 - Rev. 12

1

MJ15022 (NPN), MJ15024 (NPN)

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (Note 2) (I _C = 100 mAdc, I _B = 0)	MJ15022 MJ15024	V _{CEO(sus)}	200 250	_ _	-
Collector Cutoff Current (V _{CE} = 200 Vdc, V _{BE(off)} = 1.5 Vdc) (V _{CE} = 250 Vdc, V _{BE(off)} = 1.5 Vdc)	MJ15022 MJ15024	I _{CEX}	- -	250 250	μAdc
Collector Cutoff Current $(V_{CE} = 150 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 200 \text{ vdc}, I_B = 0)$	MJ15022 MJ15024	I _{CEO}	- -	500 500	μAdc
Emitter Cutoff Current $(V_{CE} = 5 \text{ Vdc}, I_B = 0)$		I _{EBO}	-	500	μAdc
SECOND BREAKDOWN					
Second Breakdown Collector Current with Base Forward Biased (V _{CE} = 50 Vdc, t = 0.5 s (non-repetitive)) (V _{CE} = 80 Vdc, t = 0.5 s (non-repetitive))		I _{S/b}	5 2	_ _	Adc
ON CHARACTERISTICS					
DC Current Gain $ (I_C = 8 \text{ Adc, } V_{CE} = 4 \text{ Vdc)} $ $ (I_C = 16 \text{ Adc, } V_{CE} = 4 \text{ Vdc)} $		h _{FE}	15 5	60 -	-
Collector-Emitter Saturation Voltage (I _C = 8 Adc, I _B = 0.8 Adc) (I _C = 16 Adc, I _B = 3.2 Adc)		V _{CE(sat)}	_ _	1.4 4.0	Vdc
Base–Emitter On Voltage ($I_C = 8$ Adc, $V_{CE} = 4$ Vdc)		V _{BE(on)}	-	2.2	Vdc
DYNAMIC CHARACTERISTICS			•	•	
Current-Gain - Bandwidth Product (I _C = 1 Adc, V _{CE} = 10 Vdc, f _{test} = 1 MHz)		f _T	4	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f _{test} = 1 MHz)		C _{ob}	_	500	pF

^{2.} Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2%.

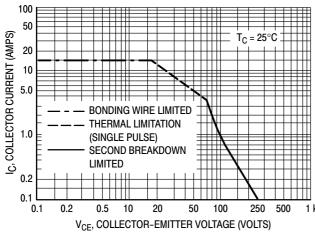


Figure 1. Active-Region Safe Operating Area

There are two limitations on the powerhandling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 1 is based on $T_{J(pk)} = 200^{\circ}C$; T_C is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values Ion than the limitations imposed by second breakdown.

MJ15022 (NPN), MJ15024 (NPN)

TYPICAL CHARACTERISTICS

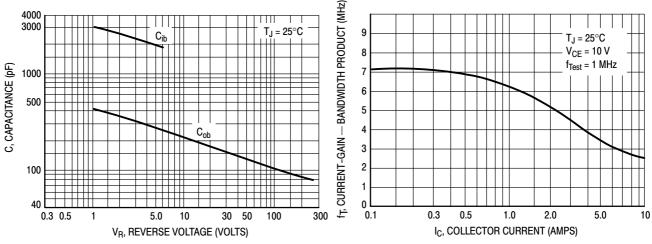


Figure 2. Capacitances

Figure 3. Current-Gain — Bandwidth Product

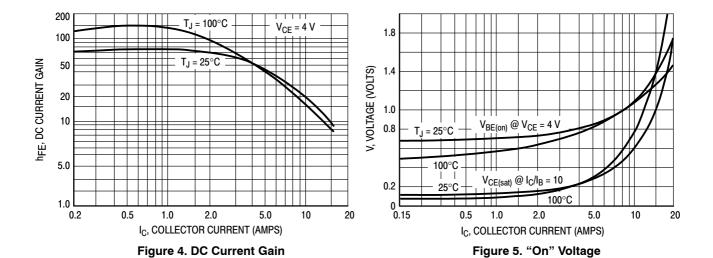
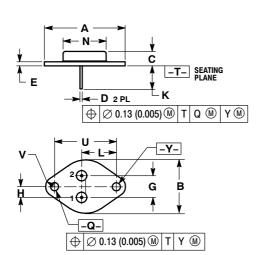



Figure 6. Collector Saturation Region

MJ15022 (NPN), MJ15024 (NPN)

PACKAGE DIMENSIONS

TO-204 (TO-3) **CASE 1-07 ISSUE Z**

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
- 3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	1.550 REF		39.37 REF		
В		1.050		26.67	
C	0.250	0.335	6.35	8.51	
D	0.038	0.043	0.97	1.09	
E	0.055	0.070	1.40	1.77	
G	0.430 BSC		10.92 BSC		
Н	0.215 BSC		5.46 BSC		
K	0.440	0.480	11.18	12.19	
L	0.665 BSC		16.89 BSC		
N		0.830		21.08	
Q	0.151	0.165	3.84	4.19	
U	1.187 BSC		30.15 BSC		
٧	0.131	0.188	3.33	4.77	

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR

ON Semiconductor and under a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any other applications in mineral business of the state of the any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative