Order this document by MJ21193/D

Silicon Power Transistors

The MJ21193 and MJ21194 utilize Perforated Emitter technology and are specifically designed for high power audio output, disk head positioners and linear applications.

- Total Harmonic Distortion Characterized
- High DC Current Gain hFE = 25 Min @ IC = 8 Adc
- · Excellent Gain Linearity
- High SOA: 2.5 A, 80 V, 1 Second

MJ21193* NPN MJ21194*

*Motorola Preferred Device

16 AMPERE
COMPLEMENTARY
SILICON POWER
TRANSISTORS
250 VOLTS
250 WATTS

CASE 1-07 TO-204AA (TO-3)

MAXIMUM RATINGS

Rating	S	Symbol	Value	Unit
Collector–Emitter Voltage	\	VCEO	250	Vdc
Collector–Base Voltage	\	V _{СВО}	400	Vdc
Emitter–Base Voltage	\	VEBO	5	Vdc
Collector–Emitter Voltage – 1.5 V	,	VCEX	400	Vdc
Collector Current — Continuous Peak (1)		IC	16 30	Adc
Base Current — Continuous		lΒ	5	Adc
Total Power Dissipation @ T _C = 25°C Derate Above 25°C		PD	250 1.43	Watts W/°C
Operating and Storage Junction Temperature Range	Т	J, T _{stg}	- 65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic		Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.7	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Typical	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage (IC = 100 mAdc, IB = 0)	VCEO(sus)	250	_	_	Vdc
Collector Cutoff Current (VCE = 200 Vdc, IB = 0)	ICEO	_	_	100	μAdc

⁽¹⁾ Pulse Test: Pulse Width = 5 μs, Duty Cycle ≤10%.

(continued)

Preferred devices are Motorola recommended choices for future use and best overall value.

REV 1

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Typical	Max	Unit
OFF CHARACTERISTICS						
Emitter Cutoff Current (V _{CE} = 5 Vdc, I _C = 0)		IEBO	_	_	100	μAdc
Collector Cutoff Current (VCE = 250 Vdc, VBE(off) = 1.5 Vdc)		ICEX	_	_	100	μAdc
SECOND BREAKDOWN						
Second Breakdown Collector Current with Base Forw (VCE = 50 Vdc, t = 1 s (non-repetitive) (VCE = 80 Vdc, t = 1 s (non-repetitive)	ard Biased	I _{S/b}	5 2.5	_ _	_	Adc
ON CHARACTERISTICS						•
DC Current Gain (IC = 8 Adc, VCE = 5 Vdc) (IC = 16 Adc, IB = 5 Adc)		hFE	25 8	_	75	
Base–Emitter On Voltage (I _C = 8 Adc, V _{CE} = 5 Vdc)		V _{BE(on)}	_	_	2.2	Vdc
Collector–Emitter Saturation Voltage (I _C = 8 Adc, I _B = 0.8 Adc) (I _C = 16 Adc, I _B = 3.2 Adc)		V _{CE(sat)}	_ _	_ _	1.4 4	Vdc
DYNAMIC CHARACTERISTICS						•
Total Harmonic Distortion at the Output $V_{RMS} = 28.3 \text{ V}$, f = 1 kHz, $P_{LOAD} = 100 \text{ W}_{RMS}$	h _{FE} unmatched	T _{HD}	_	0.8	_	%
(Matched pair hFE = 50 @ 5 A/5 V)	hFE matched		_	0.08	_	
Current Gain Bandwidth Product (IC = 1 Adc, VCE = 10 Vdc, f _{test} = 1 MHz)		fT	4	_	_	MHz
Output Capacitance (VCB = 10 Vdc, IE = 0, f _{test} = 1 MHz)		C _{ob}	_	_	500	pF

⁽¹⁾ Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤2%

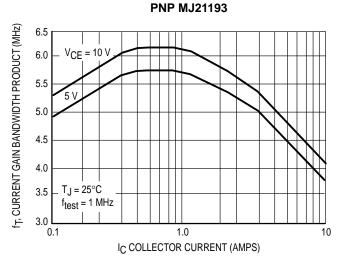


Figure 1. Typical Current Gain Bandwidth Product

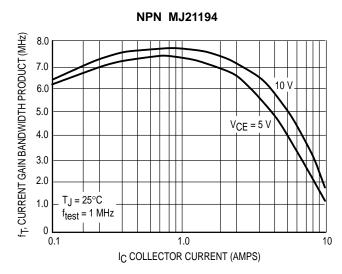


Figure 2. Typical Current Gain Bandwidth Product

TYPICAL CHARACTERISTICS

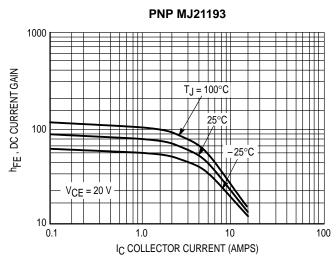


Figure 3. DC Current Gain, V_{CE} = 20 V

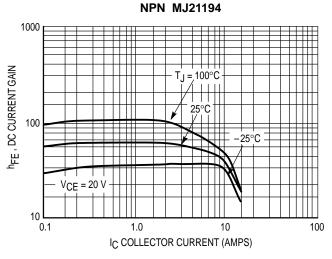


Figure 4. DC Current Gain, V_{CE} = 20 V

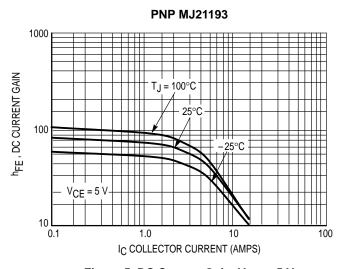


Figure 5. DC Current Gain, VCE = 5 V

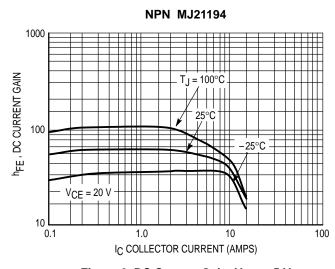


Figure 6. DC Current Gain, VCE = 5 V

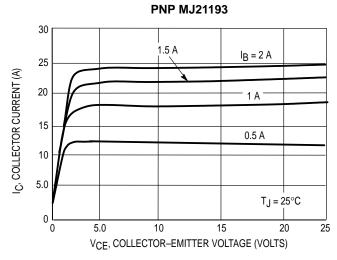
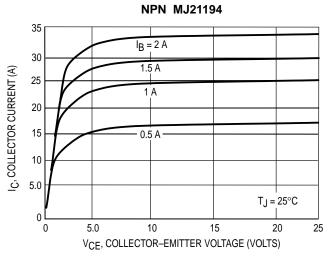



Figure 7. Typical Output Characteristics

Figure 8. Typical Output Characteristics

TYPICAL CHARACTERISTICS

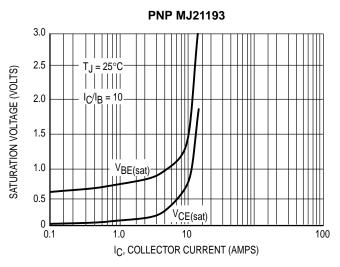


Figure 9. Typical Saturation Voltages

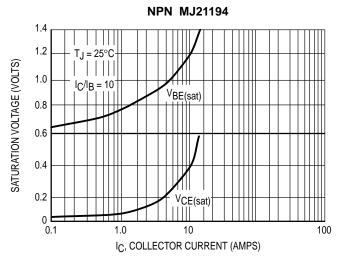


Figure 10. Typical Saturation Voltages

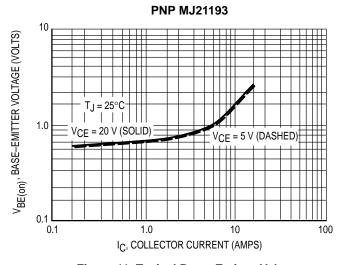


Figure 11. Typical Base-Emitter Voltage

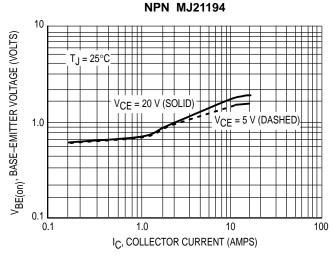


Figure 12. Typical Base-Emitter Voltage

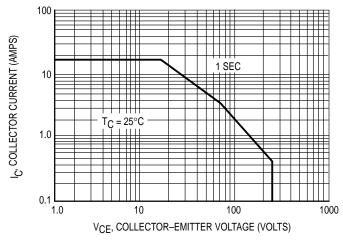


Figure 13. Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor; average junction temperature and secondary breakdown. Safe operating area curves indicate IC - VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 13 is based on $T_{J(pk)} = 200^{\circ}C$; T_{C} is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown.

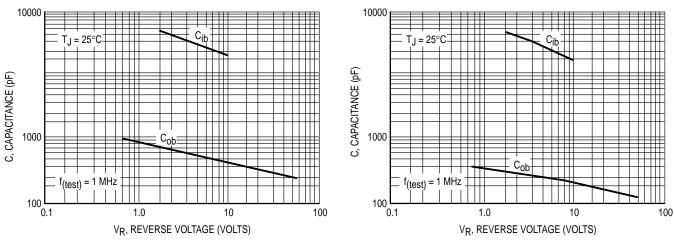


Figure 14. MJ21193 Typical Capacitance

Figure 15. MJ21194 Typical Capacitance

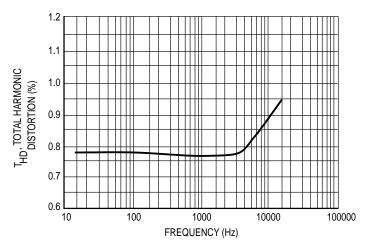
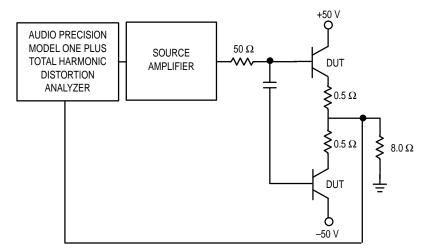
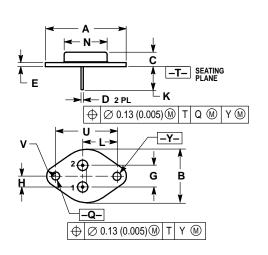




Figure 16. Typical Total Harmonic Distortion

Figure 17. Total Harmonic Distortion Test Circuit

PACKAGE DIMENSIONS

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
- ALL RULES AND NOTES ASSOCIATED WITH
 REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	1.550 REF		39.37	REF	
В		1.050		26.67	
С	0.250	0.335	6.35	8.51	
D	0.038	0.043	0.97	1.09	
Е	0.055	0.070	1.40	1.77	
G	0.430 BSC		10.92 BSC		
Н	0.215 BSC		5.46 BSC		
K	0.440	0.480	11.18	12.19	
L	0.665 BSC		16.89 BSC		
N		0.830		21.08	
Q	0.151	0.165	3.84	4.19	
J	1.187	1.187 BSC		BSC	
٧	0.131	0.188	3.33	4.77	

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR

CASE 1-07 TO-204AA (TO-3) **ISSUE Z**

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product of circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

