Complementary Power Transistors

D²PAK for Surface Mount

Complementary power transistors are for general purpose power amplification and switching such as output or driver stages in applications such as switching regulators, converters and power amplifiers.

Features

- Low Collector–Emitter Saturation Voltage –
 V_{CE(sat)} = 1.0 V (Max) @ 8.0 A
- Fast Switching Speeds
- Complementary Pairs Simplifies Designs
- Epoxy Meets UL 94 V-0 @ 0.125 in
- ESD Ratings: Human Body Model, 3B > 8000 V Machine Model, C > 400 V
- NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- Pb-Free Packages are Available

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CEO}	80	Vdc
Emitter-Base Voltage	V _{EB}	5	Vdc
Collector Current – Continuous – Peak	I _C	10 20	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	50 0.4	W W/°C
Total Power Dissipation @ T _A = 25°C Derate above 25°C	P _D	2.0 0.016	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to 150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	2.5	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	75	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

http://onsemi.com

SILICON POWER TRANSISTORS 10 AMPERES, 80 VOLTS, 50 WATTS

MARKING DIAGRAM

D²PAK CASE 418B STYLE 1

c = 4 or 5

A = Assembly Location

= Year

VW = Work Week

G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
MJB44H11G	D ² PAK (Pb-Free)	50 Units/Rail
MJB44H11T4G	D ² PAK (Pb-Free)	800/Tape & Reel
NJVMJB44H11T4G	D ² PAK (Pb-Free)	800/Tape & Reel
MJB45H11G	D ² PAK (Pb-Free)	50 Units/Rail
MJB45H11T4G	D ² PAK (Pb-Free)	800/Tape & Reel
NJVMJB45H11T4G	D ² PAK (Pb-Free)	800/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•	•			
Collector-Emitter Sustaining Voltage (I _C = 30 mA, I _B = 0)	V _{CEO(sus)}	80	-	-	Vdc
Collector Cutoff Current (V _{CE} = Rated V _{CEO} , V _{BE} = 0)	I _{CES}	-	-	10	μΑ
Emitter Cutoff Current (V _{EB} = 5 Vdc)	I _{EBO}	-	-	50	μΑ
ON CHARACTERISTICS					
Collector–Emitter Saturation Voltage (I _C = 8 Adc, I _B = 0.4 Adc)	V _{CE(sat)}	-	-	1.0	Vdc
Base-Emitter Saturation Voltage (I _C = 8 Adc, I _B = 0.8 Adc)	V _{BE(sat)}	-	-	1.5	Vdc
DC Current Gain (V _{CE} = 1 Vdc, I _C = 2 Adc)	h _{FE}	60	-	-	-
DC Current Gain (V _{CE} = 1 Vdc, I _C = 4 Adc)		40	-	-	
DYNAMIC CHARACTERISTICS					
Collector Capacitance (V _{CB} = 10 Vdc, f _{test} = 1 MHz) MJB44H11, NJVMJB44H11 MJB45H11, NJVMJB45H11	C _{cb}	_ _	130 230		pF
Gain Bandwidth Product (I _C = 0.5 Adc, V _{CE} = 10 Vdc, f = 20 MHz) MJB44H11, NJVMJB44H11 MJB45H11, NJVMJB45H11	f _T	- -	50 40	- -	MHz
SWITCHING TIMES					
Delay and Rise Times(I _C = 5 Adc, I _{B1} = 0.5 Adc) MJB44H11, NJVMJB44H11 MJB45H11, NJVMJB45H11	t _d + t _r	_ _	300 135	- -	ns
Storage Time(I_C = 5 Adc, I_{B1} = I_{B2} = 0.5 Adc) MJB44H11, NJVMJB44H11 MJB45H11, NJVMJB45H11	t _s	- -	500 500	- -	ns
Fall Time(I_C = 5 Adc, I_{B1} = I_{B2} = 0.5 Adc) MJB44H11, NJVMJB44H11 MJB45H11, NJVMJB45H11	t _f	- -	140 100	- -	ns

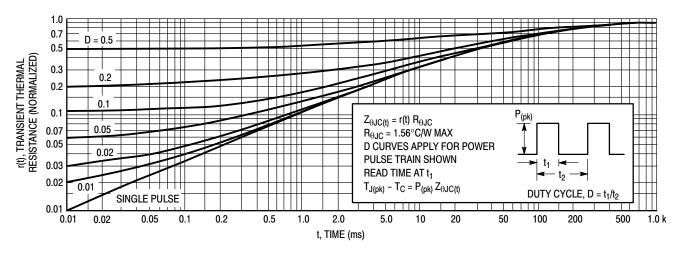


Figure 1. Thermal Response

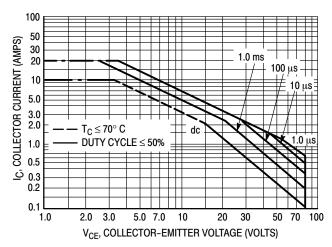


Figure 2. Maximum Rated Forward Bias Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 2 is based on $T_{J(pk)} = 150^{\circ}\text{C}$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \leq 150^{\circ}\text{C}$. $T_{J(pk)}$ may be calculated from the data in Figure 1. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

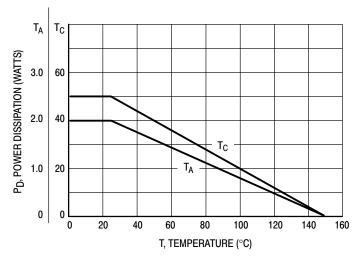


Figure 3. Power Derating

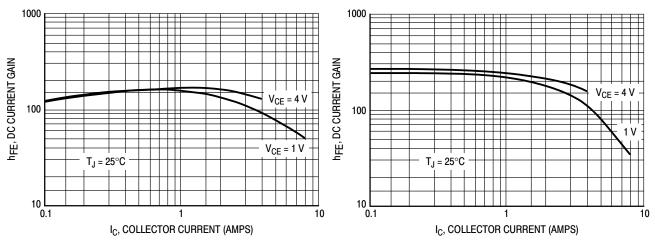


Figure 4. MJB44H11 DC Current Gain

Figure 5. MJB45H11 DC Current Gain

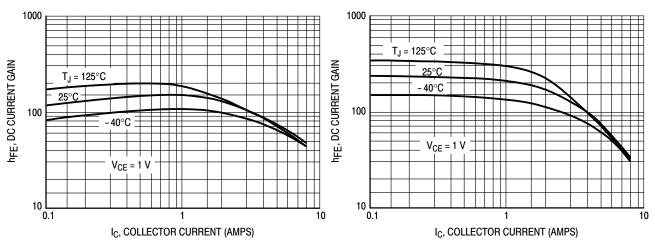


Figure 6. MJB44H11 Current Gain versus Temperature

Figure 7. MJB45H11 Current Gain versus Temperature

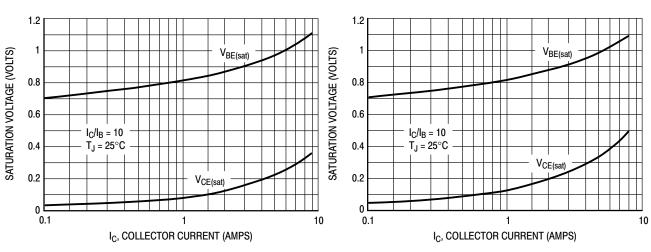
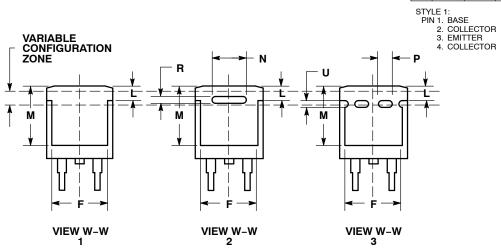


Figure 8. MJB44H11 On-Voltages

Figure 9. MJB45H11 On-Voltages


PACKAGE DIMENSIONS

D²PAK 3 CASE 418B-04 ISSUE K С -B-2 -T-K SEATING PLANE - G ≺— DзpL ⊕ 0.13 (0.005) M T B M

NOTES:

- DIMENSIONING AND TOLERANCING
- PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.340	0.380	8.64	9.65	
В	0.380	0.405	9.65	10.29	
С	0.160	0.190	4.06	4.83	
D	0.020	0.035	0.51	0.89	
E	0.045	0.055	1.14	1.40	
F	0.310	0.350	7.87	8.89	
G	0.100 BSC		2.54 BSC		
Н	0.080	0.110	2.03	2.79	
J	0.018	0.025	0.46	0.64	
K	0.090	0.110	2.29	2.79	
L	0.052	0.072	1.32	1.83	
M	0.280	0.320	7.11	8.13	
N	0.197	REF	5.00 REF		
Р	0.079	REF	2.00 REF		
R	0.039	REF	0.99 REF		
S	0.575	0.625	14.60	15.88	
V	0.045	0.055	1.14	1.40	

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada **Email**: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative