MPSA43 / MMBTA43

ã 1997 Fairchild Semiconductor Corporation

DFF CHARACTERISTICS /deR/CBO Collector-Emitter Breakdown Voltage I_c = 1.0 mA, I_g = 0 200 V /deR/CBO Collector-Base Breakdown Voltage I_c = 100 µA, I_c = 0 6.0 V /deR/CBO Collector-Cutoff Current VCB = 160 V, I_c = 0 6.0 V CBO Collector-Cutoff Current VCB = 160 V, I_c = 0 0.1 µA CBO Emitter-Cutoff Current VCB = 4.0 V, I_C = 0 0.1 µA CBO Emitter-Cutoff Current VCB = 4.0 V, I_C = 10 V 25 0 0 VPE DC Current Gain I_C = 1.0 mA, VCE = 10 V 20 0 0 VEE DC Current Gain I_C = 20 mA, I_B = 2.0 mA 0.4 V VGE(sat) Collector-Emitter Saturation Voltage I_C = 20 mA, I_B = 2.0 mA 0.9 V SMALL SIGNAL CHARACTERISTICS T Current Gain - Bandwidth Product I_C = 10 mA, VCE = 20 V, I_E = 0, f = 1.0 MHz 4.0 pF Col Collector-Base Capacitance VCB = 20 V, I_E = 0, f = 1.0 MHz 4.0 pF <	OFF CHARACTERISTICS V _{(BR)CEO} Collector-Emitter Breakdown Voltage I _c = 1.0 mA, I _B = 0 200 1 V _{(BR)EBO} Collector-Base Breakdown Voltage I _c = 100 µA, I _c = 0 6.0 0 V _{(BR)EBO} Emitter-Base Breakdown Voltage I _e = 100 µA, I _c = 0 6.0 0 V _{(BB)EBO} Emitter-Cutoff Current V _{CB} = 160 V, I _E = 0 0.1 0 ON CHARACTERISTICS* NFE DC Current Gain I _c = 1.0 mA, V _{CE} = 10 V 25 0 0 V _{CE(Sat)} Collector-Emitter Saturation Voltage I _c = 20 mA, I _b = 2.0 mA 0.4 0.4 V _{EE(Sat)} Base-Emitter Saturation Voltage I _c = 10 mA, V _{CE} = 10 V 25 0 0.4 V _{BE(Sat)} Base-Emitter Saturation Voltage I _c = 20 mA, I _b = 2.0 mA 0.4 0.9	Symbol	Parameter	Test Conditions	Min	Max	Units
Collector-Entitlet Breakdown Voltage* I _C = 1.0 mA, I _B = 0 200 V V(BR/CEO Collector-Emitter Breakdown Voltage I _C = 100 µA, I _E = 0 200 V V(BR/CEO Collector-Emitter Base Breakdown Voltage I _L = 100 µA, I _E = 0 200 V V(BR/CEO Collector-Emitter Base Breakdown Voltage I _L = 100 µA, I _C = 0 6.0 V CBO Collector-Cutoff Current V _{CB} = 160 V, I _E = 0 0.1 µA EBO Emitter-Cutoff Current V _{CB} = 160 V, I _C = 0 0.1 µA DN CHARACTERISTICS* DC Current Gain I _C = 1.0 mA, V _{CE} = 10 V 25 200 V _{EE} DC Current Gain I _C = 1.0 mA, V _{CE} = 10 V 40 200 200 Cellsati Collector-Emitter Saturation Voltage I _C = 20 mA, I _B = 2.0 mA 0.4 V V _{BE(Sat)} Base-Emitter Saturation Voltage I _C = 20 mA, I _B = 2.0 mA 0.9 V SMALL SIGNAL CHARACTERISTICS T Current Gain - Bandwidth Product I _C = 10 mA, V _{CE} = 20 V, I _E = 0, f = 1.0 MHz 4.0 pF *Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0% State = 0, f = 1.0 MHz 4.0	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		RACTERISTICS				
(Interce) Collector-Base Breakdown Voltage Ic 100 μA, Ig 0 200 V (Interce) Collector-Base Breakdown Voltage Ig 100 μA, Ig 0 200 V (Interce) Emitter-Base Breakdown Voltage Ig 100 μA, Ig 0 6.0 V Cac Collector-Cutoff Current V _{CB} = 160 V, Ig 0 0.1 μA EBO Emitter-Cutoff Current V _{CB} = 10 M, V _{CE} = 0 0.1 μA CDN CHARACTERISTICS* Ic 10 mA, V _{CE} = 10 V 40 10 25 200 V VIEW DC Current Gain Ic 10 mA, V _{CE} = 10 V 40 10 23 mA, V _{CE} = 10 V 40 10 23 mA, V _{CE} = 10 V 40 10 200 10 10 10 200 10	$\begin{tabular}{ lambda la$		Collector-Emitter Breakdown Voltage*	$l_{c} = 1.0 \text{ mA}$, $l_{B} = 0$	200		V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(BR)CEO	Collector-Base Breakdown Voltage	$I_{c} = 100 \text{ µA}, I_{c} = 0$	200		V
Collector-Cutoff Current V _{CB} 160 V, I _E = 0 0.1 μA DBC Emitter-Cutoff Current V _{EB} 4.0 V, I _C = 0 0.1 μA DN CHARACTERISTICS* IC = 1.0 mA, V _{CE} = 10 V 25 IC IC 10 mA, V _{CE} = 10 V 40 IC 200 IC 10 mA, V _{CE} = 10 V 40 IC 200 IC 200 mA, Ig = 2.0 mA 0.4 V V 30 mA, V _{CE} = 10 V 50 200 IC 200 mA, Ig = 2.0 mA 0.4 V 30	Collector-Cutoff Current V _{CB} = 160 V, I _E = 0 0.1 BBO Emitter-Cutoff Current V _{EB} = 4.0 V, I _E = 0 0.1 ON CHARACTERISTICS* Ic 10 mA, V _{CE} = 10 V 25 d0 0.1 ON CHARACTERISTICS* Ic 10 mA, V _{CE} = 10 V 25 d0 0.1 Celeating Ic 10 mA, V _{CE} = 10 V 25 d0 10 mA, V _{CE} = 10 V 25 d0 10 mA, V _{CE} = 10 V 10 mA, V _{CE} = 20 mA, I _B = 2.0 mA 0.4 10 mA, V _{CE} = 20 mA, I _B = 2.0 mA 0.4 10 mA, V _{CE} = 10 V 10 mA, V _{CE} = 20 mA, I _B = 2.0 mA 0.4 10 mA, V _{CE} = 20 V, I _E = 0, I = 10 mA, V _{CE} = 20 V, I _E = 0, I = 10 mA, V _{CE} = 20 V, I _E = 0, I = 1.0 mHz 4.0 * Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0%	(BR)EBO	Emitter-Base Breakdown Voltage	$I_{\rm E} = 100 \mu\text{A}, I_{\rm C} = 0$	6.0		V
Bit Emitter-Cutoff Current VEB = 4.0 V, IC = 0 0.1 μA ON CHARACTERISTICS* FE DC Current Gain IC = 1.0 mA, VCE = 10 V 25 40 200 Ce(sal) Collector-Emitter Saturation Voltage IC = 20 mA, IB = 2.0 mA 0.4 V Secart Base-Emitter Saturation Voltage IC = 20 mA, IB = 2.0 mA 0.9 V SMALL SIGNAL CHARACTERISTICS - Current Gain - Bandwidth Product IC = 10 mA, VCE = 20 V, IS = 0, F = 1.0 MHz 4.0 pF * cb Collector-Base Capacitance VCB = 20 V, IE = 0, F = 1.0 MHz 4.0 pF * Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0% - - - - 4.0 pF	Obs Obs <thobs< th=""> <thobs< th=""> <thobs< th=""></thobs<></thobs<></thobs<>	(BR)200	Collector-Cutoff Current	$V_{CB} = 160 \text{ V}, \text{ I}_{\text{E}} = 0$		0.1	μA
DN CHARACTERISTICS* FE DC Current Gain Ic = 1.0 mA, VcE = 10 V 25 Ic = 30 mA, VcE = 10 V 40 1c = 30 mA, VcE = 10 V 40 Ic = 30 mA, VcE = 10 V 50 200 200 CcE(sat) Collector-Emitter Saturation Voltage Ic = 20 mA, Ig = 2.0 mA 0.4 V BE(sat) Base-Emitter Saturation Voltage Ic = 20 mA, Ig = 2.0 mA 0.9 V SMALL SIGNAL CHARACTERISTICS Current Gain - Bandwidth Product Ic = 10 mA, VcE = 20 V, fs = 100 MHz 50 MHz iccb Collector-Base Capacitance VcB = 20 V, IE = 0, f = 1.0 MHz 4.0 pF *Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0%	Display="block">ON CHARACTERISTICS* FE DC Current Gain Ic = 1.0 mA, V_{CE} = 10 V 25 Ic = 10 mA, V_{CE} = 10 V 40 1c = 30 mA, V_{CE} = 10 V 50 200 CcE(sat) Collector-Emitter Saturation Voltage Ic = 20 mA, I_B = 2.0 mA 0.4 0.4 beE(sat) Base-Emitter Saturation Voltage Ic = 20 mA, I_B = 2.0 mA 0.9 0.9 CMALL SIGNAL CHARACTERISTICS Current Gain - Bandwidth Product Ic = 10 mA, V_{CE} = 20 V, f = 100 MHz 50 f = 100 MHz Collector-Base Capacitance V_{CB} = 20 V, I_E = 0, f = 1.0 MHz 4.0 4.0 *Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0%	BO	Emitter-Cutoff Current	$V_{EB} = 4.0 \text{ V}, I_{C} = 0$		0.1	μA
DN CHARACTERISTICS* FE DC Current Gain I _c = 1.0 mA, V _{CE} = 10 V 25 40 I _c = 10 mA, V _{CE} = 10 V 50 200 Cessal Collector-Emitter Saturation Voltage I _c = 20 mA, I _B = 2.0 mA 0.4 V Base-Emitter Saturation Voltage I _c = 20 mA, I _B = 2.0 mA 0.4 V SMALL SIGNAL CHARACTERISTICS Current Gain - Bandwidth Product I _c = 10 mA, V _{CE} = 20 V, fermitter Saturation Voltage I _c = 10 mA, V _{CE} = 20 V, fermitter Saturation Voltage Collector-Base Capacitance V _{CB} = 20 V, I _E = 0, f = 1.0 MHz 4.0 pF *Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0% State Saturation Saturat	ON CHARACTERISTICS* FE DC Current Gain I _c = 1.0 mA, V _{CE} = 10 V 25 40 20 10 = 30 mA, V _{CE} = 10 V 50 200 200 10 = 30 mA, V _{CE} = 10 V 50 200 10 = 30 mA, V _{CE} = 10 V 50 200 10 = 30 mA, V _{CE} = 10 V 50 200 10 10 = 30 mA, V _{CE} = 10 V 50 200 10 10 = 30 mA, V _{CE} = 10 V 50 200 10 <th10< th=""> 10 10</th10<>	50					
FE DC Current Gain I _c = 1.0 mA, V _{CE} = 10 V 25 40 I _c = 30 mA, V _{CE} = 10 V 50 200 V _{CE(Sat)} Collector-Emitter Saturation Voltage I _c = 20 mA, I _b = 2.0 mA 0.4 V V _{EE(Sat)} Base-Emitter Saturation Voltage I _c = 20 mA, I _b = 2.0 mA 0.4 V SMALL SIGNAL CHARACTERISTICS I _c = 10 mA, V _{CE} = 20 V, I _b = 2.0 v, f = 1.0 MHz 0.9 V Current Gain - Bandwidth Product I _c = 10 mA, V _{CE} = 20 V, I _b = 0, f = 1.0 MHz 4.0 pF i _{cb} Collector-Base Capacitance V _{CB} = 20 V, I _E = 0, f = 1.0 MHz 4.0 pF *Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0%	FE DC Current Gain I _C = 1.0 mA, V _{CE} = 10 V 25 40 I _C = 10 mA, V _{CE} = 10 V 40 1 _C = 30 mA, V _{CE} = 10 V 50 200 GE(sat) Collector-Emitter Saturation Voltage I _C = 20 mA, I _B = 2.0 mA 0.4 0.4 Base-Emitter Saturation Voltage I _C = 20 mA, I _B = 2.0 mA 0.9 0.9 GMALL SIGNAL CHARACTERISTICS Current Gain - Bandwidth Product I _C = 10 mA, V _{CE} = 20 V, I _B = 2.0 V, f = 100 MHz 50 Current Gain - Bandwidth Product I _C = 10 mA, V _{CE} = 20 V, f = 1.0 MHz 4.0 10 Grade Collector-Base Capacitance V _{CB} = 20 V, I _E = 0, f = 1.0 MHz 4.0 *Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0%)N CHAR	ACTERISTICS*		1	1	
Ic = 10 IIA, VCE = 10 V 40 Ic = 30 mA, VCE = 10 V 50 200 $V_{CE(gat)}$ 0.4 V MALL SIGNAL CHARACTERISTICS r Current Gain - Bandwidth Product Ic = 10 mA, VcE = 20 V, f = 100 MHz Scb Collector-Base Capacitance VCB = 20 V, IE = 0, f = 1.0 MHz * Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0%	Ic = 10 IIIA, VCE = 10 V 40 Ic = 30 mA, VCE = 10 V 50 200 VCE(sat) Collector-Emitter Saturation Voltage Ic = 20 mA, I _B = 2.0 mA 0.4 VBE(sat) Base-Emitter Saturation Voltage Ic = 20 mA, I _B = 2.0 mA 0.9 SMALL SIGNAL CHARACTERISTICS r Current Gain - Bandwidth Product Ic = 10 mA, VcE = 20 V, f = 100 MHz 50 cb Collector-Base Capacitance VCB = 20 V, IE = 0, f = 1.0 MHz 4.0 *Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0% X X	FE	DC Current Gain	$I_{c} = 1.0 \text{ mA}, V_{ce} = 10 \text{ V}$	25 40		
Collector-Emitter Saturation Voltage Ic = 20 mA, I _B = 2.0 mA 0.4 V (BE(Sat) Base-Emitter Saturation Voltage Ic = 20 mA, I _B = 2.0 mA 0.9 V SMALL SIGNAL CHARACTERISTICS Ic = 10 mA, V _{CE} = 20 V, I _B = 2.0 mA 0.9 V SMALL SIGNAL CHARACTERISTICS Ic = 10 mA, V _{CE} = 20 V, I _B = 0, f = 1.0 MHz 50 MHz Collector-Base Capacitance V _{CB} = 20 V, I _E = 0, f = 1.0 MHz 4.0 pF *Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0%	CcE(sat) Collector-Emitter Saturation Voltage I _c = 20 mA, I _B = 2.0 mA 0.4 Base-Emitter Saturation Voltage I _c = 20 mA, I _B = 2.0 mA 0.9 SMALL SIGNAL CHARACTERISTICS r Current Gain - Bandwidth Product I _c = 10 mA, V _{CE} = 20 V, f = 100 MHz Cob Collector-Base Capacitance V _{CB} = 20 V, I _E = 0, f = 1.0 MHz 4.0 *Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0%			$I_{\rm C} = 30 \text{ mA}, V_{\rm CE} = 10 \text{ V}$ $I_{\rm C} = 30 \text{ mA}, V_{\rm CE} = 10 \text{ V}$	50	200	
Base-Emitter Saturation Voltage I _C = 20 mA, I _B = 2.0 mA 0.9 V SMALL SIGNAL CHARACTERISTICS Current Gain - Bandwidth Product I _C = 10 mA, V _{CE} = 20 V, f = 100 MHz 50 MHz Collector-Base Capacitance V _{CB} = 20 V, I _E = 0, f = 1.0 MHz 4.0 pF *Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0%	Base-Emitter Saturation Voltage I _C = 20 mA, I _B = 2.0 mA 0.9 SMALL SIGNAL CHARACTERISTICS r Current Gain - Bandwidth Product I _C = 10 mA, V _{CE} = 20 V, f = 100 MHz cb Collector-Base Capacitance V _{CB} = 20 V, I _E = 0, f = 1.0 MHz 4.0 *Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0%	CE(sat)	Collector-Emitter Saturation Voltage	$I_{\rm C} = 20$ mA, $I_{\rm B} = 2.0$ mA		0.4	V
MALL SIGNAL CHARACTERISTICS Current Gain - Bandwidth Product I _c = 10 mA, V _{CE} = 20 V, 50 MHz f = 100 MHz Collector-Base Capacitance V _{CB} = 20 V, I _E = 0, f = 1.0 MHz 4.0 pF *Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0%	SMALL SIGNAL CHARACTERISTICS Current Gain - Bandwidth Product I _c = 10 mA, V _{CE} = 20 V, frequence f = 100 MHz Collector-Base Capacitance V _{CB} = 20 V, I _E = 0, f = 1.0 MHz *Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0%	BE(sat)	Base-Emitter Saturation Voltage	$I_{\rm C} = 20 \text{ mA}, I_{\rm B} = 2.0 \text{ mA}$		0.9	V
Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0%	Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0%	*		$v_{CB} = 20 v, r_E = 0, r = 1.0 Wi r_Z$		4.0	р

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[™] CoolFET[™] CROSSVOLT[™] E²CMOS[™] FACT[™] FACT Quiet Series[™] FAST[®] FAST[®] FAST[™] GTO[™] HiSeC[™] ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.