

TARJETA COMPATIBLE CON ARDUINO UNO

NANO-V3

Descripción

La tarjeta NANO-V3 es una tarjeta de desarrollo de proyectos basada en el ATmega328 compartiendo todas las funciones que la antes mencionada, funciona con un cable USB Mini-B.

Especificaciones técnicas				
Microcontrolador	ATmega328			
Arquitectura	AVR			
Voltaje de entrada	7-12 VDC			
Voltaje de funcionamiento	5 VDC			
SRAM	2КВ			
Memoria Flash	32KB, (2KB son utilizados por el bootloader)			
Frecuencia de reloj	16 MHz			

Pines de entrada analógicos	8
EEPROM	1 KB
Corriente por cada pin I/O	40mA
Pines digitales I/O	22
Pines PWM	6
Consumo de corriente	19 mA
Tamaño de la tarjeta	45 mm x 18 mm
Peso	7 gramos

Elementos de la tarjeta

Definición de pines

Primeros pasos

1. Instalación del IDE de Arduino: Si aún no tienes el IDE de Arduino instalado, puedes descargarlo e instalarlo desde el sitio oficial de Arduino:

https://www.arduino.cc/en/Main/Software

2. Conectar la Nano V3 al Ordenador: Conecta la Nano V3 al ordenador mediante el cable USB mini-B. Si es la primera vez que la conectas, el sistema operativo puede instalar automáticamente los controladores necesarios, de no ser así se pueden descargar del siguiente enlace:

https://www.wch.cn/download/CH341SER EXE.html

3. Configuración del IDE de Arduino: Inicia el IDE en tu ordenador, luego, en el menú Herramientas (Tools), selecciona tarjeta (Board) y elige Nano o Arduino Nano.

4. Seleccionar el Procesador: En el mismo menú Herramientas, selecciona Procesador (Processor) y elige ATmega328P o ATmega328P (Old Bootloader) dependiendo de la versión de tu Nano. Si no estás seguro, puedes probar ambas opciones.

5. Seleccionar el Puerto COM: En el menú Herramientas, selecciona Puerto (Port) y elige el puerto COM al que está conectada tu Nano V3. El nombre del puerto dependerá del sistema operativo que estés usando (por ejemplo, COM3 en Windows o /dev/ttyUSB0 en Linux).

6. Cargar un ejemplo o programa, si no cuentas con alguno a continuación te proporcionamos una aplicación.

Ejemplo de aplicación con sensor de proximidad infrarojo E18-D80NK (OKY3277)

Materiales Necesarios

- Tarjeta Nano V3
- Sensor de proximidad infrarrojo E18-D80NK, lo puedes adquirir en el siguiente enlace: <u>https://www.agelectronica.com/detalle.php?p=OKY3277</u>
- Cables de conexión
- Resistor de $10k\Omega$ (opcional, dependiendo de tu configuración)

Conexiones del Hardware

El sensor E18-D80NK tiene tres cables:

- Rojo (VCC): Alimentación (5V)
- Negro (GND): Tierra
- Amarillo (OUT): Señal de salida

Conexión a la Nano V3

- Rojo (VCC) a 5V de la Nano V3.
- Negro (GND) a GND de la Nano V3.
- Amarillo (OUT) a un pin digital de la Nano V3 (por ejemplo, el pin 7).

Código

Este código básico leerá la señal del sensor y mostrará el resultado en el Monitor Serie.


```
const int sensorPin = 7; // Pin al que está conectado el OUT del sensor
void setup() {
    Serial.begin(9600); // Iniciar la comunicación serie a 9600 bps
    pinMode(sensorPin, INPUT); // Configurar el pin del sensor como entrada
}
void loop() {
    int sensorValue = digitalRead(sensorPin); // Leer el estado del sensor
    Serial.print("Sensor Value: ");
    Serial.println(sensorValue); // Imprimir el valor del sensor en la consola serie
    delay(500); // Esperar 500 ms antes de la siguiente lectura
```

}

Explicación del Código

- Constante y setup(): Define el pin del sensor y configura la comunicación serie y el pin del sensor.
- loop(): Lee el estado del sensor y lo imprime en el Monitor Serie. Repite cada 500 ms.

Uso del Monitor Serie

- Abre el Monitor Serie en el IDE de Arduino (puedes encontrarlo en Herramientas > Monitor Serie).
- Asegúrate de que la velocidad de transmisión esté configurada a 9600 baudios.
- Verás "Sensor Value: 0" cuando no haya ningún objeto detectado y "Sensor Value: 1" cuando haya un objeto en el rango de detección del sensor.

Ajustes y Consideraciones

- El sensor E18-D80NK tiene un potenciómetro que permite ajustar la distancia de detección. Gira el potenciómetro para ajustar la distancia según tus necesidades.
- Si experimentas lecturas inestables, podrías agregar un condensador de desacoplamiento entre VCC y GND del sensor para estabilizar la señal.

Enlace externo: video de aplicación / tutorial

ELECTRÓNICOS POR EL MUNDO. (2023, 12 enero). ARDUINO NANO - Como encender un led con Arduino Nano. Desde cero - TUTORIAL PASO A PASO. [Vídeo]. YouTube. <u>https://www.youtube.com/watch?v=gyPRx4ZxwQQ</u>

	AG Electrónica SAPI de CV República de El Salvador 20 Piso 2, Centro Histórico, Centro, 06000 Ciudad de México, CDMX	Realizó	Adrián Jesús Beltrán Cruz	SERTIFICA ISO	CERTIFIED
		Revisó	Ing. Jesús Daniel Ibarra Noguez		
Teléfono: 55 5130 7210	Fecha	10/07/2024	COMPANY	RAGEMENT STS	

