

NTE6410 **Unijunction Transistor (UJT)**

Description:

The NTE6410 is a PN unijunction transistor in a TO92 type package designed for use in pulse and timing circuits, sensing circuits and thyristor trigger circuits.

Absolute Maximum Ratings: $(T_A = +25^{\circ}C)$ unless other specified)

RMS Power Dissipation, P _D
RMS Emitter Current, I _E 50mA
Peak–Pulse Emitter Current (Note 1), I _E
Emitter Reverse Voltage, V _{B2E} 30V
Interbase Voltage (Note 2), V _{B2B1}
Operating Junction Temperature Range, T _J
Storage Temperature Range, T _{stg}
Note 1 Duty cycle < 1% PRR = 10 PPS

Note 1. Duty cycle \leq 1%, PRR = 10 PPS

Note 2. Based upon power dissipation at $T_A = +25$ °C

Electrical Characteristics: (T_A = +25°C unless other specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Intrinsic Standoff Ratio	n i	V _{B2B1} = 10V, Note 3	0.70	7 - 1	0.85	
Interbase Resistance	L R _{BB}	Walls UIC	4.0	6.0	9.1	kΩ
Interbase Resistance Temperature Coefficient	αR_{BB}		0.1	_	0.9	%/°C
Emitter Saturation Voltage	V _{BE1(sat)}	$V_{B2B1} = 10V, I_E = 50mA, Note 4$	_	2.5	-	V
Modulated Interbase Current	I _{B2(Mod)}	$V_{B2B1} = 10V, I_E = 50mA$	_	15	-	mA
Emitter Reverse Current	I _{EB2O}	$V_{B2E} = 30V, I_{B1} = 0$	_	0.005	1.0	μΑ
Peak-Point Emitter Current	l _P	V _{B2B1} = 25V	_	1.0	5.0	μΑ
Valley-Point Current	I _V	$V_{B2B1} = 20V, R_{B2} = 100\Omega, Note 4$	4.0	7.0	-	mA
Base-One Peak Pulse Voltage	V _{OB1}		5.0	8.0	_	V

Note 3. Intrinsic standoff ratio, is defined in terms of peak-point voltage, VP, by means of the equation: $V_P = \eta V_{B2B1} V_F$, where V_F is approximately 0.49 volts at +25°C @ $I_F = 10\mu A$ and decreases with temperature at approximately 2.5mV/°C. Components R₁, C₁, and the UJT form a relaxation oscillator, the remaining circuitry serves as a peak–voltage detector. The forward drop of Diode D_1 compensates for V_F . To use, the "call" button is pushed, and R_3 is adjusted to make the current meter, M₁, read full scale. When the "call" button is released, the value of η is read directly from the meter, if full scale on the meter reads 1.0.

Note 4. Use pulse techniques: PW ~ 300µs, duty cycle ≤ 2.0% to avoid internal heating, which may result in erroneous readings.

