#### **Product Specification**

### **GENERAL DESCRIPTION**

OB3309 is a highly integrated and high performance U-type Cold Cathode Fluorescent Lamp (CCFL) controller optimized for LCD display backlight application. Comprehensive protection functions are integrated, thus it provides a cost effective yet high reliability LCD backlight solution.

Operating in push pull configuration, OB3309 converts DC input voltage to the pure sinusoidal voltage and current waveforms, to ignite and operate CCFL lamps.

It provides a high degree of design flexibility by offering great programmability for key parameters which include operating frequency, striking frequency, striking time, dimming polarity, burst dimming frequency, soft-start time, and soft on/off time for burst dimming.

Various dimming modes control and dimming polarity programmability are offered. Both internal burst and external low frequency PWM (LPWM) dimming methods are available for a wide range of dimming control. Analog dimming is also provided through external DC input control to achieve wide dimming range.

The highly integrated OB3309 provides complete protection features covering output over voltage, over output current protection, lamp fail safe function, and IC under voltage lockout.

The OB3309 is available in SOP-16 Packages.

#### **FEATURES**

- High performance push pull topology
- Optimized for U type CCFL solution
- Adjustable dimming polarity
- Adjustable striking frequency & time
- Flexible Dimming mode Control:
  - Analog dimming control
  - Internal burst dimming control
  - External burst (LPWM) dimming control
- Adjustable minimum duty for internal burst dimming
- Adjustable minimum reference voltage for analog dimming
- 0-2V DC voltage direct dimming control without external circuits
- Comprehensive Protection Coverage:
  - Output over voltage protection (OVP)
  - Output over current protection (OCP)
  - Open lamp protection and short lamp protection
  - Arcing protection

## **APPLICATIONS**

- LCD Monitor
- LCD TV
- Flat panel display

#### TYPICAL APPLICATION

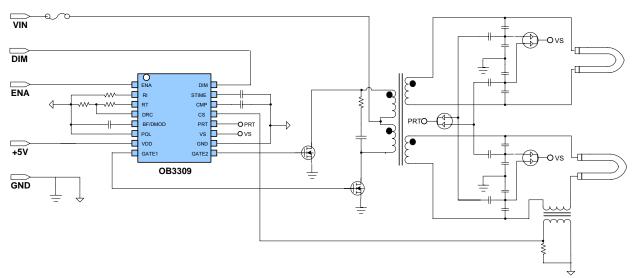



Figure 1. OB3309 Typical Application Schematic



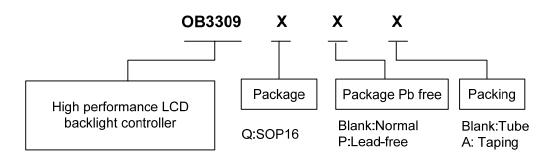
## Absolute Maximum Ratings

| Parameter                               | Value                  |
|-----------------------------------------|------------------------|
| VDD Input Voltage to GND                | 7V                     |
| CS to GND                               | -1.5V to<br>VDD+0.3V   |
| I/O to GND                              | -0.3V to<br>VDD + 0.3V |
| Operating Ambient Temp. T <sub>A</sub>  | -20 °C ~ 85°C          |
| Operating Junction Temp. T <sub>J</sub> | 150°C                  |
| Min/Max Storage Temp. T <sub>stg</sub>  | -55 °C ~150°C          |
| Lead Temp. (10 Sec)                     | 260 °C                 |

**Note:** Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum-rated conditions for extended periods

may affect device reliability.

# Recommended Operating Range


| Parameter           | Value         |  |  |
|---------------------|---------------|--|--|
| VDD Voltage         | 4.5V to 5.5V  |  |  |
| Operating Frequency | 30K to 150KHz |  |  |

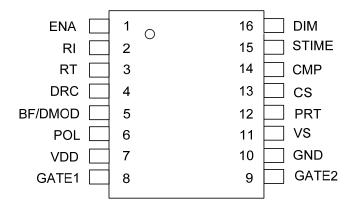
# Package Thermal Characteristics

| Parameter                    | Value    |
|------------------------------|----------|
| Thermal resistance θJA (SOP) | 85 °C /W |

## Ordering Information

| Part Number | Description            |  |
|-------------|------------------------|--|
| OB3309QP    | SOP16, pb-free in tube |  |
| OB3309QPA   | SOP16, pb-free in T&R  |  |




## Package Marking Information



Y:Year Code WW:Week Code(01-52) Q:SOP16 Package P:Pb-free Package S:Internal Code(Optional)



# Pin Configuration



# **Terminal Assignment**

| Number | Pin Name | I/O    | Pin Function                                                                                                                                                                                                                                        |
|--------|----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | ENA      | Input  | Enable control input, active high                                                                                                                                                                                                                   |
| 2      | RI       | I/O    | Connected an external resistor to ground to set striking frequency (No Floating)                                                                                                                                                                    |
| 3      | RT       | I/O    | Connected an external resistor to ground to set operation frequency                                                                                                                                                                                 |
| 4      | DRC      | Input  | <ul> <li>Dimming range setting.</li> <li>Connect 0.2V to 2V DC voltage can set minimum burst duty from 100% to 0% for bust dimming;</li> <li>Connect 0V to 1.25V DC voltage can set minimum Vref_ea from 0V to 1.25V for analog dimming;</li> </ul> |
|        |          |        | Connected to VDD to set analog dimming mode                                                                                                                                                                                                         |
| 5      | BF/DMOD  | I/O    | Connected to GND to set external LPWM dimming mode                                                                                                                                                                                                  |
|        |          | 0      | Connect an external capacitor to GND to set internal burst dimming mode. The burst mode frequency is determined by the external capacitor                                                                                                           |
| 6      | POL      | Input  | PWM Dimming polarity selection :                                                                                                                                                                                                                    |
| 7      | VDD      | Power  | +5V Power supply                                                                                                                                                                                                                                    |
| 8      | GATE 1   | Output | Output drive                                                                                                                                                                                                                                        |
| 9      | GATE 2   | Output | Output drive                                                                                                                                                                                                                                        |
| 10     | GND      | Ground | Power ground                                                                                                                                                                                                                                        |
| 11     | VS       | Input  | Lamp voltage feedback                                                                                                                                                                                                                               |
| 12     | PRT      | Input  | Lamp fault detection                                                                                                                                                                                                                                |
| 13     | CS       | Input  | Lamp current feedback                                                                                                                                                                                                                               |
| 14     | CMP      | I/O    | Loop compensation and soft start time setting                                                                                                                                                                                                       |
| 15     | STIME    | I/O    | Connect an external capacitor to GND to set striking time                                                                                                                                                                                           |
| 16     | DIM      | Input  | Dimming signal input                                                                                                                                                                                                                                |



## Functional Block Diagram

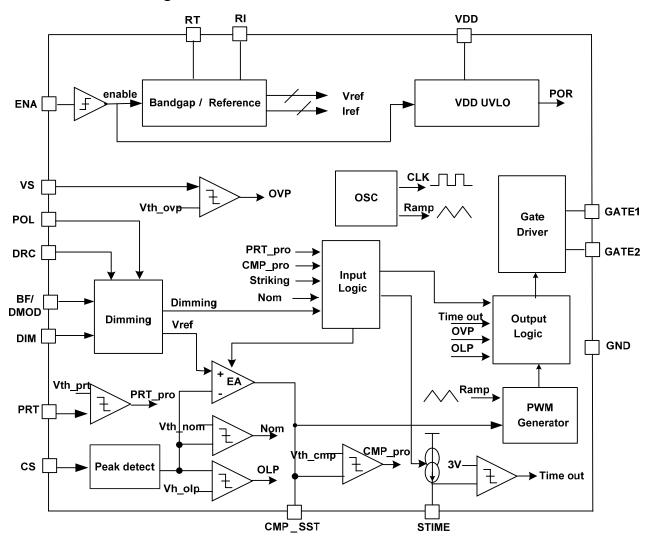



Figure 2. OB3309 Functional Block Diagram



# **Electrical Characteristics**

VDD=5V, ENA=5V, RT=36Kohm, RI=120Kohm,  $T_A$ =25  $^{\circ}$ C, if not otherwise noted.

| Parameter                                            | Symbol                   | Conditions                                                                                                                         | Min | Тур  | Max | Units          |
|------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----|----------------|
| Current Consumption                                  |                          |                                                                                                                                    |     |      |     |                |
| Standby current                                      | I <sub>standby</sub>     | ENA=0V                                                                                                                             | -   | -    | 8   | uA             |
| Operating supply current                             | $I_{VDD}$                | No loading, CMP=5V                                                                                                                 | -   | 4.5  | 6   | mA             |
| Operating supply current                             | $I_{VDD}$                | C <sub>load</sub> =2nF, CMP=5V                                                                                                     | -   | 5.5  | 8   | mA             |
| VDD UVLO                                             |                          |                                                                                                                                    |     |      |     |                |
| UVLO on                                              |                          |                                                                                                                                    | 3.6 |      |     | ٧              |
| UVLO off                                             |                          |                                                                                                                                    |     |      | 4.4 | V              |
| Enable / Disable                                     |                          |                                                                                                                                    | -   | -    |     | •              |
|                                                      | ON                       |                                                                                                                                    | 2.0 |      |     | V              |
| ENA (Enable) threshold voltage                       | OFF                      |                                                                                                                                    |     |      | 0.8 | 1 <sup>v</sup> |
|                                                      | R <sub>ENA</sub>         | Pull down resistor                                                                                                                 |     | 100  |     | Kohm           |
| High Frequency Oscillator                            |                          |                                                                                                                                    |     |      |     |                |
| Operating frequency                                  | F <sub>OP</sub>          |                                                                                                                                    | -   | 50   | -   | KHz            |
| Striking frequency                                   | F <sub>STK</sub>         |                                                                                                                                    |     | 65   |     | KHz            |
| Max. (overlap) duty cycle                            |                          |                                                                                                                                    |     | 45   |     | %              |
| Low Frequency Oscillator for Burs                    | t Mode Dim               | ming                                                                                                                               |     |      |     |                |
| Burst frequency                                      |                          | C <sub>BF/DMOD</sub> =22nF                                                                                                         | -   | 200  | -   | Hz             |
| Max. burst duty                                      | $D_{MAX}$                | C <sub>BF/DMOD</sub> =22nF, DIM<0.2V                                                                                               | -   | 100  | -   | %              |
| Min. burst duty 1 (set by DRC) 1                     | D <sub>MIN1</sub>        | $C_{BF/DMOD}$ =22nF, POL=0V, $V_{DRC}$ =V <sub>RT</sub> , DIM>2V                                                                   | -   | 0    | -   | %              |
| Min. burst duty 2 (set by DRC) 1                     | D <sub>MIN2</sub>        | $C_{BF/DMOD}$ =22nF, POL=0V, $V_{DRC}$ =92% $V_{RT}$ , $V_{DRC}$ <dim<2v< td=""><td>-</td><td>9</td><td>-</td><td>%</td></dim<2v<> | -   | 9    | -   | %              |
| Min. burst duty 3 (set by DRC) 1                     | D <sub>MIN1</sub>        | $C_{BF/DMOD}$ =22nF, POL=5V, $V_{DRC}$ =0V, DIM<0.2V                                                                               | -   | 0    | -   | %              |
| Min. burst duty 4 (set by DRC) 1                     | D <sub>MIN2</sub>        | $C_{BF/DMOD}$ =22nF, POL=5V, $V_{DRC}$ =9%VRT+0.2,DIM< $V_{DRC}$                                                                   | -   | 9    | -   | %              |
| Analog Dimming Control                               |                          |                                                                                                                                    |     |      |     |                |
| Min. Lamp Current Reference Voltage 1 (set by DRC) 1 | V <sub>ref_EA_MIN1</sub> | BF/DMOD=VDD, V <sub>DRC</sub> =0V , DIM>2V                                                                                         | -   | 0    | -   | V              |
| Min. Lamp Current Reference Voltage 2 (set by DRC) 1 | V <sub>ref_EA_MIN2</sub> | BF/DMOD=VDD,<br>V <sub>DRC</sub> =25%V <sub>RT</sub> , DIM>1.28V                                                                   | -   | 0.5  | -   | ٧              |
| Max. Lamp Current Reference Voltage                  | $V_{ref\_EA\_MAX}$       | BF/DMOD=VDD, DIM<0.2V                                                                                                              | -   | 1.25 | -   | ٧              |
| External LPWM Dimming Control                        |                          |                                                                                                                                    |     |      |     |                |
| External LPWM duty                                   |                          | BF/DMOD=0V                                                                                                                         | 0   | -    | 100 | %              |
| External I DWM Logic insult level                    | high                     | BF/DMOD=0V                                                                                                                         | 2.0 |      |     | ٧              |
| External LPWM Logic input level                      | low                      | BF/DMOD=0V                                                                                                                         |     |      | 0.8 | V              |



| Parameter                                              | Symbol                   | Conditions                                                          | Min | Тур                     | Max      | Units |  |
|--------------------------------------------------------|--------------------------|---------------------------------------------------------------------|-----|-------------------------|----------|-------|--|
| Error Amplifier                                        |                          |                                                                     |     |                         |          |       |  |
| Reference voltage                                      | $V_{ref\_EA}$            | C <sub>BF/DMOD</sub> =22nF<br>or BF/DMOD=0V                         | 1.2 | 1.25                    | 1.3      | V     |  |
| Open loop voltage gain                                 |                          |                                                                     |     | 60                      |          | dB    |  |
| Unity gain bandwidth                                   |                          | CMP=15nF                                                            |     | 350                     |          | Hz    |  |
| Soft on current                                        | I <sub>SOFT_ON</sub>     |                                                                     |     | 60                      |          | uA    |  |
| Soft off current                                       | I <sub>SOFT_OFF</sub>    |                                                                     |     | 120                     |          | uA    |  |
| Soft start                                             |                          |                                                                     |     |                         |          |       |  |
| Soft start current                                     | I <sub>SST</sub>         |                                                                     |     | 1.3                     |          | uA    |  |
| Striking time                                          |                          |                                                                     |     |                         |          |       |  |
| Striking timer current                                 | I <sub>STIME1</sub>      |                                                                     |     | 1.3                     |          | uA    |  |
| Striking timer threshold                               | $V_{th\_STIME1}$         |                                                                     |     | 3                       |          | V     |  |
| Control and Protection Thres                           | shold / Debo             | unce time                                                           |     |                         |          |       |  |
| Ignition completion threshold                          | $V_{th\_CS}$             |                                                                     |     | 0.85                    |          | V     |  |
| ignition completion theshold                           | $V_{th\_PRT}$            |                                                                     |     | 1.25                    |          | V     |  |
| VS regulate voltage at Striking                        | $V_{th\_REG}$            | Striking                                                            |     | 2.0                     |          | V     |  |
| Threshold voltage for PRT                              | $V_{th\_PRT}$            | Normal                                                              |     | 1.25                    |          | V     |  |
| Fault timer currnet                                    | I <sub>STIME2</sub>      | Normal                                                              |     | 14                      |          | uA    |  |
| Fault timer threshold                                  | $V_{th\_STIME2}$         | Normal                                                              |     | 3                       |          | V     |  |
| CS threshold voltage for OLP                           | $V_{th\_OLP}$            | Normal, BF/DMOD=0V or C <sub>BF/DMOD</sub> =22nF                    |     | 0.8                     |          | V     |  |
| (open lamp protection)                                 |                          | Normal,<br>BF/DMOD=VDD                                              |     | 60%*V <sub>ref_EA</sub> |          | v     |  |
| OLP debounce time                                      | $T_OLP$                  | Normal                                                              |     | 160                     |          | ms    |  |
| VS threshold voltage for OVP (over voltage protection) | $V_{th\_OVP}$            | Normal                                                              |     | 2.0                     |          | V     |  |
| OVP debounce time                                      | T <sub>OVP</sub>         | Normal                                                              |     | 160                     |          | ms    |  |
| Normal protection blanking time                        | T_nom                    | Normal                                                              |     | 0.48                    |          | Sec   |  |
| Dimming_on time for OLP disable                        | T_dim_on                 | Normal, BF/DMOD=0V or C <sub>BF/DMOD</sub> =22nF                    |     | 480                     |          | uS    |  |
| Dimming Polarity Control                               | Dimming Polarity Control |                                                                     |     |                         |          |       |  |
|                                                        | $V_{th\_POL}$            | Negative internal burst<br>mode or positive external<br>PWM dimming | -   | -                       | 2.0      | V     |  |
| Dimming Polarity Selection                             |                          | mode or negative 2.05 external PWM dimming                          |     | -                       |          |       |  |
|                                                        | R <sub>POL</sub>         | Pull down resistor                                                  |     | 45K                     | <u> </u> | ohm   |  |
| Gate Driver Output                                     | Gate Driver Output       |                                                                     |     |                         |          |       |  |
| Gate1                                                  | R <sub>ON</sub>          | I <sub>sink/Isource</sub> =70mA                                     | -   | 8                       | 12       | ohm   |  |
| Gate2                                                  | R <sub>ON</sub>          | I <sub>sink/Isource</sub> =70mA                                     | -   | 8                       | 12       | ohm   |  |

Note: 1 Detail description to see Figure 4 of page 8;

$$V_{ref\_EA} = \frac{25}{36} \times (2 - V_{DIM})$$
 for  $0.2V \le V_{DIM} \le 2V$ 

 $<sup>^2</sup>$  For analog dimming mode,  $V_{th\_OLP}$  tracks with  $V_{ref\_EA}.$   $V_{ref\_EA}$  can be calculated by the following equation:



## **Function Description**

#### **General Operation**

OB3309 CCFL controller is designed for U-type CCFL's LCD backlight system applications configured in push pull topology; it converts the DC input voltage to pure sinusoidal waveforms for CCFL operating with high efficiency and low EMI emission. The resonant frequency of the tank is set by the transformer leakage inductance and secondary parallel capacitor.

The lamp fault protection functions are integrated to provide a high reliability & simplifier solution with low system cost. Dimming polarity selection can be achieved by setting the voltage level at POL Pin. A typical application scheme is shown in figure 8 on page 10.

#### **Enable the Controller**

OB3309 is activated by applying logic high to the ENA input. It is TTL logic compatible. The controller is enabled when the voltage at ENA pin is higher than 2.0V. Toggling the ENA signal resets the state machine hence restarts the inverter system.

#### **Normal Operation and Striking Frequency**

The normal operation frequency,  $F_{OP}$ , is set by the resistor connected to RT pin. It is given by

$$F_{OP}(KHz) = \frac{1800}{RT(Kohm)}$$

The striking frequency,  $F_{\text{striking}}$ , is set by the resistors connected to both RI and RT pins. It can be calculated by the following equation:

$$F_{STRIKING}(KHz) = \frac{1800}{RT//RI(Kohm)}$$

## Lamp Ignition and Striking Voltage Regulation

To ignite CCFL, a much higher voltage than that in normal operation is required, especially for aged lamp or in low ambiance temperature. The output voltage is divided by the capacitive voltage divider. A voltage signal is fed into VS pins with diodes and their peaks are compared with internal 2.0V threshold voltage. Consequently, the maximum output voltage is regulated and limited.

During ignition, OB3309 monitors the peak voltage levels at CS & PRT pins, it is recognized that all lamps are lit If the peak voltage of CS pin is higher than 0.85V and the voltage level at PRT pin is

lower than 1.25V, then the system enters normal operating mode. Otherwise, the duty cycle of the gate drive signal will increase further to deliver more power to ignite the lamp. Once the duty cycle of gate drive signal reaches maxima of 45%, the internal striking timer will be triggered. If the lamps are lit before the time out, OB3309 enters the normal operation mode. Otherwise, it enters the shutdown mode. The striking time is given by:

$$T(sec) = 2.31 \times C[uF]$$

After the striking time out, the striking frequency will be switched to normal frequency and last for 64ms, if any one of the lamps still can not be lit, OB3309 will enters the shutdown mode as show in Figure 3.

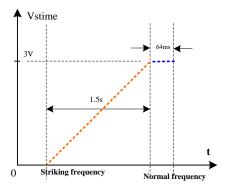



Figure 3 Striking mode control

### Soft Start and Soft On/off

External capacitor connected to CMP pin provides soft start and soft on/off control. At start up, an internal current source starts to charge the capacitor. Consequently, voltage at CMP pin increases gradually and so as to the pulse width of the PWM Gate signals. This soft start control helps to reduce the MOSFET inrush current and voltage stresses, thus expand the lamp life time. The slope of the soft start  $\Delta V/\Delta T$  can be approximated as:

$$\frac{\Delta V[V]}{\Delta T[mS]} = \frac{217}{C_{CMP}[nF] \times RT//RI[kohm]}$$

Once lamps are ignited, the capacitor connected to CMP pin performs the loop compensation function. In internal burst mode dimming or external burst (PWM) mode dimming conditions, the voltage ramping up and down at this pin performs a soft on/off control function in each burst cycle.

## **Lamp Current Regulation**

Lamp current is regulated by the currents feedback loop with an internal transconductance error amplifier.



The AC lamp currents are sensed by the sense resistors (refer to R24 in figure 8) connected in series with high voltage coupling inductance. The AC voltage across the sense resistors are fed into the CS pins. The peak of the sensed AC voltage is detected. The peak value is compared with an internal reference voltage. The error is amplified that controls the on time of the push pull switches, as a result, the lamp current is regulated. The lamp current can be calculated by the following equation:

$$I_{lamp}(A) = N * \frac{1.33}{\sqrt{2} \times R_{sense}}$$

Where N is the coupling inductance turns ratio,  $N=N_{LV}/N_{HV}$ , the inductance T2 ,as shown in figure 8.

#### **Dimming Control**

Three commonly used dimming modes, analog mode dimming, internal burst mode dimming and external burst (PWM) dimming functions, are supported without any additional components. Different dimming modes are selected by BF/DMOD pin. The lamp brightness is determined by the control signal at DIM pin. Both in internal burst mode dimming and external PWM mode dimming, the polarity can be set by the voltage level at POL pin as shown in the following table:

| Function       | Polarity |          |  |
|----------------|----------|----------|--|
| Function       | POL< 2V  | POL >2V  |  |
| Analog dimming | Negative | Negative |  |
| Internal Burst | Negative | Positive |  |
| External LPWM  | Positive | Negative |  |

External LPWM burst dimming mode is selected by shorting BF/DMOD pin to ground. OB3309 accepts an external LPWM signal to DIM pin with a swing voltage of 0V to a level greater than 2V. The lamp brightness is controlled by the duty cycle of the LPWM signal. The burst frequency is equal to LPWM frequency.

Connecting BF/DMOD pin to VDD selects analog mode dimming. A DC voltage ranging from 0.2V to 2V at DIM pin performs analog mode dimming control. The voltage at DIM pin modulates internal error amplifier reference voltage  $V_{\text{ref\_EA}}$  from 1.25V to  $V_{\text{DRC}}$ , which corresponds to a lamp current of approximately 100% to  $(V_{\text{DRC}}/1.25)\times100\%$ .  $V_{\text{ref\_EA}}$  can be calculated by the following equation:

$$V_{ref\_EA}(V) = \frac{25}{36} \times (2 - V_{DIM})$$
 for

$$0.2V \le V_{DIM} \le 2 - \frac{36}{25} \times V_{DRC}$$

The minimum voltage of V<sub>ref\_EA</sub> is determined by the voltage at DRC which should be set in the range from 0V to 1.25V for analog dimming mode.

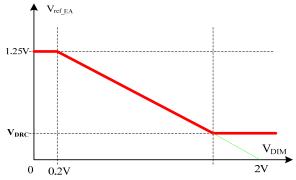



Figure. 4 Vref of EA vs DIM voltage

Internal burst mode dimming is obtained by connecting a capacitor to BF/DMOD pin. A low frequency triangular waveform generator is formed by the capacitor and internal circuit of IC. The triangular voltage waveform with peak of 2V and valley of 0.2V at this pin is used for the internal low frequency burst PWM generation. Duty cycle so as to lamp brightness is controlled by the analog signal at DIM pin. The burst mode dimming frequency F<sub>burst</sub> is set by the following equation:

$$F_{burst}(Hz) = \frac{158400}{C_{RF}[nF] \times RT[Kohm]}$$

A DC voltage ranging from 0.2V to 2V at DIM pin corresponds to a lamp brightness of approximately 100% to  $\frac{(2-V_{\it DRC})}{1.8}\times 100\%$  , as shown in Figure 5.

$$Duty = \frac{(2 - V_{DIM})}{1.8} \times 100\%$$
 for  $0.2V \le V_{DIM} \le V_{DRC}$ 




Figure. 5 Duty of burst vs DIM voltage (Negative internal burst mode dimming)



If the voltage of POL is higher than 2.05V, the dimming polarity is changed, and DC voltage from 0.2V to 2V at DIM pin corresponds to the lamp's brightness of approximately minimum duty cycle of burst dimming to 100%, as shown in Figure 6. The minimum duty cycle of burst dimming can be calculated by the following equation:

$$\left\{ \begin{array}{ll} \frac{(V_{DRC}-0.2)}{1.8}\times 100\% & \text{for } V_{DRC} > 0.2 \text{V} \\ \\ 0\% & \text{for } V_{DRC} \leq 0.2 \text{V} \end{array} \right\}$$

$$Duty = \frac{(V_{DIM} - V_{DRC})}{2 - V_{DRC}} \times 100\% \text{ for } 0.2V < V_{DRC} < V_{DIM}$$

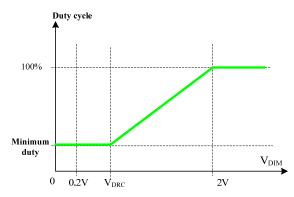



Figure. 6 Duty of burst vs DIM voltage (Positive internal burst mode dimming)

| Function                | Pin Con                                   | Dotio   |          |
|-------------------------|-------------------------------------------|---------|----------|
| Function                | BF/DMOD                                   | DIM     | Ratio    |
| Analog dimming          | >4.5V                                     | 0.2V-2V | Set by   |
| Analog uninning         | 74.5V                                     | U.ZV-ZV | customer |
| Internal Burst          | ternal Burst Capacitor 0.2V-2V            |         | Set by   |
| internal burst          | Capacitoi                                 | 0.20-20 | customer |
| External LPWM <0.2V PWM |                                           | PWM     | Set by   |
| External LPVVIVI        | LPVVIVI \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |         | customer |

A DC voltage at DRC pin determines the minimum dimming thus it is used to adjust dimming range for analog mode dimming or internal burst mode dimming. Because the voltage of RT pin is fixed 2V when OB3309 is in operation, the voltage of DRC can be set by RT divided resistors, as shown in Figure 7. (Patent pending)

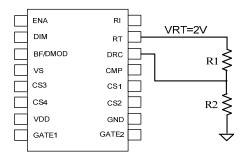



Figure. 7 Use DRC PIN to set Dimming Range

$$V_{DRC}(V) = 2 \times \frac{R2}{R1 + R2}$$

#### RT = R1 + R2

### **Lamp Fail Safe Functions**

The OB3309 provides complete protection features that cover all common lamp fault conditions including:

- · Lamp open or broken
- Two terminals of lamp are short together
- · High voltage terminal of lamp is short to ground

The sensed lamp voltage and current signals, CS, VS and PRT are used to monitor and detect the faults.

During normal operation, if the peak voltage level at CS pin is less than  $V_{th\_OLP}$ , the lamp open or lamp broken is recognized and the system will shutdown after 160ms. If the peak voltage level at PRT pin is higher than  $V_{th\_PRT}$ , an internal source current (14uA) charges the capacitor which connected STIME pin to ground. Once the voltage at STIME pin reaches 3V, the IC will shut down. But in internal burst mode dimming or external PWM mode dimming, if the dimming\_on time is less than 480uS, these two protections are disabled.

During normal operation, if VS peak voltage is more than 2.0V, it enters latched shutdown mode.



# Reference Application Circuit for 2U Lamps

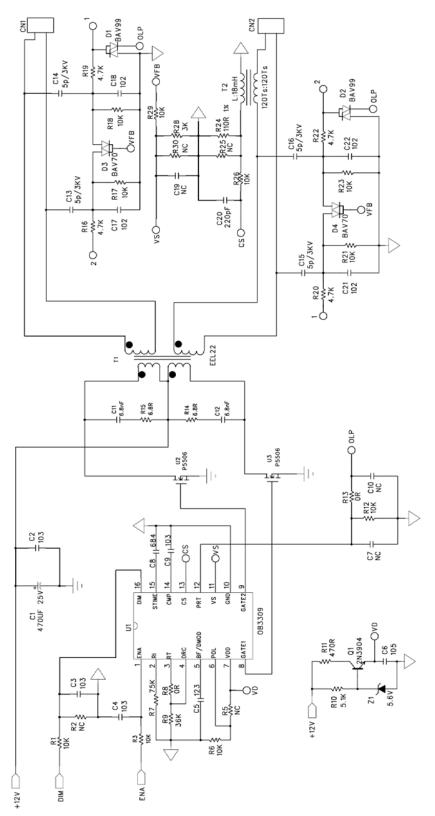
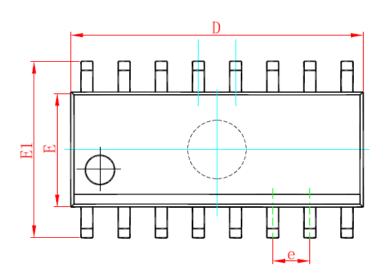
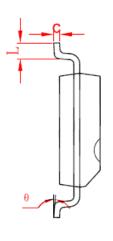
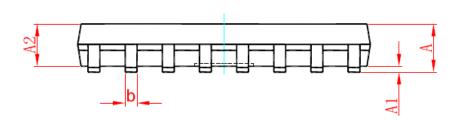



Figure 8. OB 3309 Reference Application Schematic


ADIM: 0V, Max. Brightness; 5V, Min. Brightness (for analog mode dimming)
PWM: 0V, Max. Brightness; 5V, Min. Brightness (for internal burst mode dimming)
100%, Max. Brightness; 30%Min. Brightness (for external burst mode dimming)


VIN: 10.8-13.2V


ENA: Disable, 0-0.8V; Enable, 2-5V



# SOP16 PACKAGE OUTLINE DIMENSIONS







| Symbol | Dimensions | Dimensions In Millimeters |       | ns In Inches |  |
|--------|------------|---------------------------|-------|--------------|--|
| Symbol | Min        | Max                       | Min   | Max          |  |
| Α      | 1.350      | 1.750                     | 0.053 | 0.069        |  |
| A1     | 0.100      | 0.300                     | 0.004 | 0.012        |  |
| A2     | 1.350      | 1.550                     | 0.053 | 0.061        |  |
| b      | 0.330      | 0.510                     | 0.013 | 0.020        |  |
| С      | 0.170      | 0.250                     | 0.007 | 0.010        |  |
| D      | 9.800      | 10.400                    | 0.386 | 0.409        |  |
| E      | 3.800      | 4.040                     | 0.150 | 0.159        |  |
| E1     | 5.800      | 6.240                     | 0.228 | 0.246        |  |
| е      | 1.270      | (BSC)                     | 0.050 | (BSC)        |  |
| L      | 0.400      | 1.270                     | 0.016 | 0.050        |  |
| θ      | 0°         | 8°                        | 0°    | 8°           |  |



## Important Notice

#### Right to make changes

On-Bright Electronics Corp. reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

#### Warranty information

On-Bright Electronics Corp. warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used to the extent it deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

On-Bright Electronics Corp. assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using On-Bright's components, data sheet and application notes. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

#### Life support

On-Bright Electronics Corp.'s products are not designed to be used as components in devices intended to support or sustain human life. On-bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in medical applications.

#### Military

On-Bright Electronics Corp.'s products are not designed for use in military applications. On-Bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in military applications.