

OP-07

Low Offset, Low Drift Operational Amplifier

The OP-07 has very low input offset voltage which is obtained by trimming at the wafer stage. These low offset voltages generally eliminate any need for external nulling. The OP-07 also features low input bias current and high open-loop gain. The low offsets and high open-loop gain make the OP-07 particularly useful for high-gain applications.

The wide input voltage range of ±13V minimum combined with high CMRR of 110 dB and high input impedance provide high accuracy in the non-inverting circuit configuration. Excellent linearity and gain accuracy can be maintained even at high closed-loop gains.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - · Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

NATL SEMICOND (LINEAR)

T-79-06-10

OP-07 Low Offset, Low Drift Operational Amplifier

General Description

The OP-07 has very low input offset voltage which is obtained by trimming at the wafer stage. These low offset voltages generally eliminate any need for external nulling. The OP-07 also features low input bias current and high openloop gain. The low offsets and high open-loop gain make the OP-07 particularly useful for high-gain applications.

The wide input voltage range of ±13V minimum combined with high CMRR of 110 dB and high input impedance provide high accuracy in the non-inverting circuit configuration. Excellent linearity and gain accuracy can be maintained even at high closed-loop gains.

Stability of offsets and gain with time or variation in temperature is excellent.

The OP-07 is available in TO-99 metal can, ceramic or molded DIP.

For improved specifications, see the LM607.

Features

■ Low V_{OS}

75 μV Max

■ Low V_{OS} Drift

0.6 μV/°C Max

■ Ultra-Stable vs Time

1.0 µV/Month Max

Low Noise

0.6 μVp-p Max

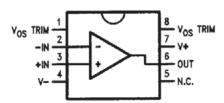
■ Wide Input Voltage Range

±14V

■ Wide Supply Voltage Range

 $\pm 3V$ to $\pm 18V$

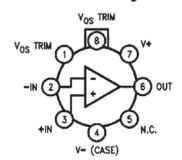
■ Replaces the µA714


■ Fits 725/108A/308A, 741, AD510 Sockets

Applications

- Strain Gauge Amplifiers
- Thermocouple Amplifiers
- Precision Reference Buffer
- Analog Computing Functions

Connection Diagrams


Dual-In-Line Package

TL/H/10550-1

See NS Package Number J08A or N08E

Metal Can Package

TL/H/10550-2

See NS Package Number H08C

Ordering Information

T _A = 25°C V _{OS} Max (μV)	H08C TO-99	Package J08A CERDIP	N08E Plastic	Operating Temperature Range		
75	OP07EJ	OP07EZ	OP07EP	COM		
75	OP07J*	OP07Z		MIL		
150	OP07CJ	OP07CZ	OP07CP	СОМ		
150	OP07DJ		OP07DP	СОМ		

^{*}Also available per SMD #8203602

NATL SEMICOND (LINEAR)

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage ± 22V
Internal Power Dissipation (Note 5) 500 mW
Differential Input Voltage ± 30V
Input Voltage (Note 6) ± 22V
Output Short-Circuit Duration Continuous

Storage Temperature Range
J and Z Packages -65°C to +150°C
P Package -65°C to +125°C

Lead Temperature (Soldering, 60 sec.) 260°C

Junction Temperature -65°C to +150°C

Operating Temperature Range

Electrical Characteristics

Unless otherwise specified, $V_S = \pm 15 V$, $T_A = 25 ^{\circ} C$. **Boldface** type refers to limits over $-55 ^{\circ} C \le T_A \le +125 ^{\circ} C$

Symbol	Parameter	Conditions		Units		
Symbol	Farameter	Conditions	Min	Тур	Max	Onico
V _{OS}	Input Offset Voltage	(Note 1) (Note 1)		30 60	75 200	μV
ΔV _{OS/t}	Long-Term Input Offset Voltage Stability	(Note 2)		0.2	1.0	μV/Mo
los	Input Offset Current			0.4 1.2	2.8 5.6	nA
l _B	Input Bias Current			±1.0 ±2	±3.0 ±6	nA
e _{np-p}	Input Noise Voltage	0.1 Hz to 10 Hz (Note 3)		0.35	0.6	μV _{p-p}
e _n	Input Noise Voltage Density	f _O = 10 Hz (Note 3) f _O = 100 Hz (Note 3) f _O = 1000 Hz (Note 3)		10.3 10.0 9.6	18.0 13.0 11.0	nV/√Hz
i _{np-p}	Input Noise Current	0.1 Hz to 10 Hz (Note 3)		14	30	pA _{p-p}
in	Input Noise Current Density	f _O = 10 Hz (Note 3) f _O = 100 Hz (Note 3) f _O = 1000 Hz (Note 3)		0.32 0.14 0.12	0.80 0.23 0.17	pA/√Hz
R _{IN}	Input Resistance Differential-Mode	(Note 4)	20	60		МΩ
RINCM	Input Resistance Common-Mode			200		GΩ
IVR	Input Voltage Range		±13.0 ±13.0	±14.0 ±13.5		٧
CMRR	Common-Mode Rejection Ratio	V _{CM} = ±13V	110 106	126 123		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 3V \text{ to } \pm 18V$		4 5	10 20	μ٧/٧
Avo	Large-Signal Voltage Gain	$R_L \ge 2 k\Omega, V_O = \pm 10V$ $R_L \ge 2 k\Omega, V_O = \pm 10V$	200 150	500 400		V/mV
		$R_L \ge 500\Omega$, $V_O = \pm 0.5V$, $V_S = \pm 3V$ (Note 4)	150	400		
Vo	Output Voltage Swing	R _L ≥ 10 kΩ	± 12.5	±13.0		
		$R_L \ge 2 k\Omega$	± 12.0	±12.8		V
		$R_L \ge 2 k\Omega$ $R_L \ge 1 k\Omega$	± 12.0 ± 10.5	± 12.6 ± 12.0		

Electrical Characteristics (Continued)

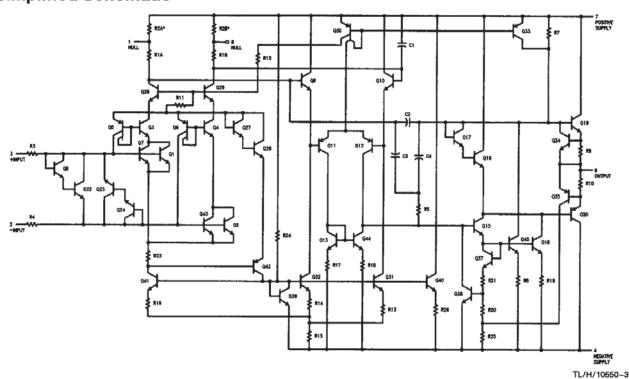
NATL SEMICOND (LINEAR)

Unless otherwise specified, $V_S = \pm 15V$, $T_A = 25^{\circ}C$. **Boldface** type refers to limits over $-55^{\circ}C \le T_A \le +125^{\circ}C$

Symbol	Parameter	Conditions		Units			
- Jillooi	r aramotor	Conditions	Min	Тур	Max	Units	
SR	Slew Rate	$R_L \ge 2 k\Omega$ (Note 3)	0.1	0.3		V/µs	
BW	Closed-Loop Bandwidth	A _{VCL} = +1 (Note 3)	0.4	0.6		MHz	
R _O	Open-Loop Output Resistance	$V_{O} = 0, I_{O} = 0$		60		Ω	
P _d	Power Consumption	$V_S = \pm 15V$, No Load $V_S = \pm 3V$, No Load		75 4	120 6	mW	
	Offset Adj. Range	$R_P = 20 \text{ k}\Omega$		±4		mV	
TCV _{OS} n	Average Input Offset Voltage Drift Without External Trim With External Trim	(Note 3) $R_P = 20 \text{ k}\Omega \text{ (Note 4)}$		0.3	1.3	μV/°C	
TCIOS	Average Input Offset Current Drift	(Note 3)		8	50	pA/°C	
TCIB	Average Input Bias Drift	(Note 3)		13	50	pA/°C	

Note 1: V_{OS} is measured approximately 0.5 second after application of power.

Note 2: Long-Term Offset Voltage Stability refers to the averaged trend line of VOS vs time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in Vos during the first 30 operating days are typically 2.5 μV. Parameter is sample tested.


Note 4: Guaranteed by design.

Note 5: The typical θ_{JA} of the H08 (TO-99) package is 155°C/W, the J08 (CERDIP) package is 92° C/W and the N08 (Molded DIP) is 100° C/W. The typical θ_{JC} of the H08 package is 17.5° C/W. All numbers apply for packages soldered directly into an etched circuit board.

Note 6: For supply voltages of less than $\pm 22V$, the maximum input voltage is 0.5V beyond either supply.

Note 7: See RETSOPO7X for the OP07H military specifications.

Simplified Schematic

*R2A and R2B are electronically trimmed on chip at the factory for minimum offset voltage.

NATL SEMICOND (LINEAR)

Electrical Characteristics

Unless otherwise specified, $V_S = \pm 15V$, $T_A = 25^{\circ}C$. Boldface type refers to limits over $0^{\circ}C \le T_A \le 70^{\circ}C$

Symbol	Parameter	Conditions	OP-07E			OP-07C			Units
,			Min	Тур	Max	Min	Тур	Max	
Vos	Input Offset Voltage	(Note 1)		30 45	75 130		60 85	150 250	μV
V _{OS/t}	Long-Term V _{OS} Stability	(Note 2)		0.3	1.5		0.4	2.0	μV/Mo
los	Input Offset Current			0.5 0.9	3.8 5.3		0.8 1.6	6.0 8.0	nA
IB	Input Bias Current	A SAME OF THE SAME		±1.2 ± 1.5	±4.0 ± 5.5		±1.8 ±2.2	±7.0 ±9.0	nA
e _{np-p}	Input Noise Voltage	0.1 Hz to 10 Hz (Note 3)		0.35	0.6		0.38	0.65	μV _{p-p}
en	Input Noise Voltage Density	$f_O = 10 \text{ Hz}$ $f_O = 100 \text{ Hz} \text{ (Note 3)}$ $f_O = 1000 \text{ Hz}$		10.3 10.0 9.6	18.0 13.0 11.0		10.5 10.2 9.8	20.0 13.5 11.5	nV/√Hz
i _{np-p}	Input Noise Current	0.1 Hz to 10 Hz (Note 3)		14	30		15	35	pA _{p-p}
in	Input Noise Current Density	$f_O = 10 \text{ Hz}$ $f_O = 100 \text{ Hz} \text{ (Note 3)}$ $f_O = 1000 \text{ Hz}$		0.32 0.14 0.12	0.80 0.23 0.17		0.35 0.15 0.13	0.90 0.27 0.18	pA/√Ĥž
R _{IN}	Input Resistance Differential-Mode	(Note 4)	15	50		8	33		МΩ
RINCM	Input Resistance Common-Mode			160			120		GΩ
IVR	Input Voltage Range		±13.0	±14.0		±13	±14		٧
CMRR	Common-Mode Rejection Ratio	$V_{CM} = \pm 13V$	106 103	123 123		100 97	120 120		dΒ
PSRR	Power Supply Rejection Ratio	$V_S = \pm 3V \text{ to } \pm 18V$ $V_S = \pm 3V \text{ to } \pm 18V$		5 7	20 32		7 10	32 5 1	μ٧/٧
Avo	Large Signal Voltage Gain	$\begin{aligned} R_L &\geq 2 k\Omega, V_O = \pm 10 V \\ R_L &\geq 2 k\Omega \\ R_L &\geq 500\Omega, V_O = \pm 0.5 V, \\ V_S &= \pm 3 V (\text{Note 4}) \end{aligned}$	200 180 150	500 450 400		120 100 100	400 400 400		V/mV
Vo	Output Voltage Swing	$R_L \ge 10 \text{ k}\Omega$ $R_L \ge 2 \text{ k}\Omega$ $R_L \ge 2 \text{ k}\Omega$ $R_L \ge 1 \text{ k}\Omega$	±12.5 ±12.0 ±12.0 ±10.5	±13.0 ±12.8 ±12.6 ±12.0		±12.0 ±11.5 ±11.0	±13.0 ±12.8 ±12.6 ±12.0		٧
SR	Slew Rate	$R_L \ge 2 k\Omega$ (Note 3)	0.1	0.3		0.1	0.3		V/μs
BW	Closed-Loop Bandwidth	A _{VCL} = +1 (Note 3)	0.4	0.6		0.4	0.6		MHz
Ro	Output Resistance	$V_0 = 0, I_0 = 0$		60			60		Ω
P _d	Power Consumption	$V_S = \pm 15V$, No Load $V_S = \pm 3V$, No Load		75 4	120 6		80 4	150 8	mW
	Offset Adj. Range	$R_P = 20 \text{ k}\Omega$		±4			±4		m∨
TCV _{OS}	Average Input Offset Voltage Drift Without External Trim	(Note 4)		0.3	1.3		0.5	1.8	μV/°C
TCV _{OS} n	With External Trim	$R_P = 20 \text{ k}\Omega \text{ (Note 4)}$		0.3	1.3		0.4	1.6	
TCIOS	Average Input Offset Current Drift	(Note 3)		8	35		12	50	pA/°C
TCIB	Average Input Bias Current Drift	(Note 3)		13	35		18	50	pA/°C

Electrical Characteristics

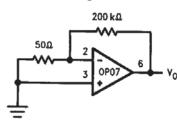
NATL SEMICOND (LINEAR)

Unless otherwise specified, $V_S = \pm 15V$, $T_A = 25^{\circ}C$. **Boldface** type refers to limits over $0^{\circ}C \le T_A \le + 70^{\circ}C$

IoS Input Offset Current 0.8 6.0 8.0 Ig Input Bias Current ±2.0 ±12.0 ±14.0 enD-p Input Noise Voltage 0.1 Hz to 10 Hz (Note 3) 0.38 0.65 en Input Noise Voltage Density fo = 10 Hz (Note 3) 10.5 20.0 fo = 100 Hz (Note 3) 10.3 13.5 9.8 11.5 Input Noise Current 0.1 Hz to 10 Hz (Note 3) 15 35 in Input Noise Current Density fo = 10 Hz (Note 3) 0.35 0.90 in Input Noise Current Density fo = 10 Hz (Note 3) 0.15 0.27 fo = 100 Hz (Note 3) 0.15 0.27 0.13 0.18 Rin Input Resistance Differential-Mode (Note 4) 7 31 Rinc Input Voltage Range ±13 ±14 CMRR Common-Mode ±13 ±14 Rejection Ratio V _S = ±3V to ±18V 7 32 PSRR Power Supply Rejection Ratio R _L ≤ 2 kΩ, V _O = ±10V R _L ≥ 500Ω, V _O = ±0.5V, V _S ±3V (Note	μV/M nA nA μVp-r nV/√H pAp-r
VOS/t Long-Term VOS Stability (Note 2) 0.5 3.0 IoS Input Offset Current 0.8 6.0 1.6 8.0 IB Input Bias Current ±2.0 ±12.0 ±12.0 ±14.0 enD-D Input Noise Voltage 0.1 Hz to 10 Hz (Note 3) 0.38 0.65 en Input Noise Voltage Density fo = 10 Hz fo = 10 Hz fo = 10 Hz fo = 100 Hz (Note 3) 10.5 20.0 fo = 100 Hz (Note 3) 10.5 13.5 13.5 fo = 100 Hz (Note 3) 15 35 in Input Noise Current Density fo = 10 Hz fo	nA nA nA μVp-r nV/√H
Ios Input Offset Current 0.8 6.0 8.0 Ig Input Bias Current ±2.0 ±12.0 ±14.0 ±14.0 enp-p Input Noise Voltage 0.1 Hz to 10 Hz (Note 3) 0.38 0.65 en Input Noise Voltage Density fo = 10 Hz (Note 3) 10.5 20.0 fo = 100 Hz (Note 3) 10.3 13.5 9.8 11.5 Input Noise Current 0.1 Hz to 10 Hz (Note 3) 15 35 in Input Noise Current Density fo = 10 Hz (Note 3) 0.15 0.27 fo = 100 Hz (Note 3) 0.15 0.27 0.13 0.18 Rin Input Resistance Differential-Mode (Note 4) 7 31 RinCM Input Resistance Common-Mode 120 10 IVR Input Voltage Range ±13 ±14 CMRR Common-Mode Rejection Ratio V _S = ±3V to ±18V 7 32 PSRR Power Supply Rejection Ratio R _L ≤ 2 kΩ, V _O = ±10V R _L ≥ 0.0 100 400 R _L ≥ 500Ω, V _O = ±0.5V, V _S ±3V (Note 4)	nA nA μVp-r nV/√H
1.6 8.0	nA μVp-r nV/√H pAp-r
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	μVp-r nV/√H pAp-r
$\begin{array}{c} \textbf{e}_{n} & \textbf{Input Noise Voltage Density} & \textbf{f}_{O} = 10 \text{Hz} \\ \textbf{f}_{O} = 100 \text{Hz} (\text{Note 3}) \\ \textbf{f}_{O} = 1000 \text{Hz} & 10.3 \\ \textbf{10.3} & 13.5 \\ \textbf{9.8} & 11.5 \\ \textbf{11.5} & 11.5 \\ \textbf{Input Noise Current} & 0.1 \text{Hz to 10 Hz (Note 3)} & 15 & 35 \\ \textbf{in} & \textbf{Input Noise Current Density} & \textbf{f}_{O} = 10 \text{Hz} \\ \textbf{f}_{O} = 100 \text{Hz} (\text{Note 3}) & 0.15 & 0.27 \\ \textbf{f}_{O} = 1000 \text{Hz} (\text{Note 3}) & 0.15 & 0.27 \\ \textbf{f}_{O} = 1000 \text{Hz} (\text{Note 3}) & 0.13 & 0.18 \\ \textbf{RIN} & \textbf{Input Resistance Differential-Mode} & (\text{Note 4}) & 7 & 31 \\ \textbf{RINCM} & \textbf{Input Resistance Common-Mode} & 120 & 120 \\ \textbf{IVR} & \textbf{Input Voltage Range} & \pm 13 & \pm 14 \\ \textbf{CMRR} & \textbf{Common-Mode} & \textbf{V}_{CM} = \pm 13V & 94 & 110 \\ \textbf{Rejection Ratio} & \textbf{V}_{S} = \pm 3V \text{to $\pm 18V$} & 7 & 32 \\ \textbf{Rejection Ratio} & \textbf{Note 4} & \textbf{Note 4} & \textbf{Note 4} \\ \textbf{AvO} & \textbf{Large Signal} & \textbf{R}_{L} \leq 2 \text{k}\Omega, \textbf{V}_{O} = \pm 10V \\ \textbf{R}_{L} \geq 500\Omega, \textbf{V}_{O} = \pm 10V \\ \textbf{V}_{S} \pm 3V (\text{Note 4}) & \textbf{100} & \textbf{400} \\ \textbf{R}_{L} \geq 500\Omega, \textbf{V}_{O} = \pm 0.5V, \\ \textbf{V}_{S} \pm 3V (\text{Note 4}) & \textbf{400} \\ \textbf{A00} & \textbf{400} & $	nV/√H pAp-p
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	рАр-г
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	pA/√H
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	МΩ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GΩ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	٧
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	dB
Voltage Gain $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	μ٧/٧
	V/mV
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	٧
SR Slew Rate $R_L \ge 2 k\Omega$ (Note 3) 0.1 0.3	V/µs
BW Closed-Loop Bandwidth A _{VCL} = +1 (Note 3) 0.4 0.6	MHz
RO Output Resistance $V_O = 0, I_O = 0$ 60	Ω
P _d Power Consumption $V_S = \pm 15V$, No Load 80 150 $V_S = \pm 3V$, No Load 4 8	mW
Offset Adj. Range $R_P = 20 \text{ k}\Omega$ ± 4	mV
Voltage Drift Without External Trim	μV/°C
	μV/°C
	·
TCI _B Average Input Bias Current Drift (Note 3) 18 50	p.

Note 1: VOS is measured approximately 0.5 second after application of power.

Note 2: Long-Term Offset Voltage Stability refers to the averaged trend line of VOS vs Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in VOS during the first 30 operating days are typically 2.5 µV. Parameter is sample tested.

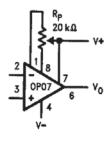

Note 3: Sample Tested.

Note 4: Guaranteed by design.

Test Circuits


NATL SEMICOND (LINEAR)

Offset Voltage Test Circuit


TL/H/10550-4

Low Frequency Noise Test Circuit

TL/H/10550-5

Optional Offset Nulling Circuit

TL/H/10550-6