
Documentation Center

RAK11200 WisBlock WiFi Module Datasheet
Overview
Description
RAK11200 is a WisBlock Core module for RAK WisBlock based on Espressif ESP32-WROVER. It is a powerful,

generic WiFi-BLE MCU module that targets a wide variety of applications. There are two CPU cores that can be

individually controlled and the CPU clock frequency is adjustable from 80 MHz to 240 MHz. The low-power deep-

sleep current consumption of the ESP32-WROVER is about 10 uA. This makes the RAK11200 an ultra-low-power

communication solution. RAK11200 can be comfortably programmed with the Arduino™ IDE or PlatformIO.

Features
Two low-power Xtensa® 32-bit LX6 microprocessors

Up to 240 MHz CPU clock

Built-in PCB antenna

4 MB External SPI Flash, 520 KB RAM

8 MB SPI Pseudo static RAM (PSRAM)

WiFi 802.11 b/g/n (802.11n up to 150 Mbps)

Bluetooth v4.2 BR/EDR and BLE specification

Rich set of peripherals: RTC, UART, I2C, SPI, SD card interface

low-power deep-sleep mode

Specifications
Overview
Board Overview
The RAK11200 WisBlock WiFi Module back view and front view (top) can be seen in Figure 1.

Figure 1: RAK11200 WiFi Module Overview

Mounting Sketch
Figure 2 shows RAK11200 module mounting sketch with the WisBase RAK5005-O board.

Documentation Center

Figure 2: RAK11200 WiFi Module Mounting Sketch

Hardware
The hardware specification is categorized into four parts. It discuses the interfacing of the module and its

corresponding functions and diagrams. It also covers the electrical and mechanical parameters that include the

tabular data of the functionalities and standard values of the RAK11200 WisBlock WiFi Module.

⚠ WARNING

Different from other ESP32 boards, the RAK11200 needs to be put manually into download mode. If

you do not force the RAK11200 into download mode, you cannot upload your sketch from Arduino IDE

(or PlatformIO) to the board.

To force the RAK11200 into download mode, you need to connect the pin BOOT0 on the WisBlock

Base RAK5005-O to GND and push the reset button.

The BOOT0 pin is on the J10 pin header, the GND pin is next to it.

Figure 3: Force ESP32 Download mode

Interfaces
UART Interface
The RAK11200 module provides two UART interfaces: UART0 and UART1. The UART0 can be used for firmware

upgrades or to access console output through the WisBlock baseboard USB interface. The UART1 is the main

communication interface with WisIO or WisSensor modules.

UART0 Programming Port

Documentation Center

To support USB, the RAK11200 has a USB-to-UART converter onboard to connect the ESP32's UART0 to the

USB connector. Figure 4 shows the RAK11200 module UART programming circuit.

Figure 4: RAK11200 USB to UART schematic

SPI Interface
The RAK11200 supports one single SPI Interface in full-duplex or half-duplex communication modes. The SPI

interface supports the following features:

Both master and slave modes;

Configurable SPI frequency;

Four SPI transfer modes, which is defined by the polarity (CPOL) and the phase (CPHA) of the SPI clock;

An internal FIFO buffer of 64-byte.

I2C Interface
The RAK11200 module provides two I2C bus interfaces. The module allows you to access directly the registers to

control I2C interfaces, which adds more flexibility to the design of the final product. Depending on your

configuration, it can serve as an I2C master mode. The I2C interface supports:

Standard mode (100 Kbit/s) and Fast mode (400 Kbit/s);

Up to 5 MHz, constrained by the SDA pull-up strength;

7-bit/10-bit addressing mode.

Pin Definition
The RAK11200 module has an ESP32-WROVER module at its core. Figure 5 shows the core module pins and

connection information.

Figure 5: RAK11200 Core module pin connection

WisBlock Core RAK11200 Pin Assignment

Documentation Center

Pin number WisBlock Function Pin name Pin number ESP32

1 VBAT VBAT --

2 VBAT VBAT --

3 GND GND 1, 15, 38

4 GND GND 1, 15, 38

5 3V3 3V3 2

6 3V3 3V3 2

7 USB_DP USB_DP --

8 USB_DN USB_DN --

9 NC NC --

10 SW1 GPIO34 6

11 UART0_TX GPIO1 35

12 UART0_RX GPIO3 34

13 EN EN 3

14 LED1 GPIO12 14

15 LED2 GPIO2 24

16 NC NC --

17 3V3 3V3 2

18 3V3 3V3 2

19 I2C1_SDA GPIO4 26

20 I2C1_SCL GPIO5 29

21 AIN0 GPIO36 4

22 AIN1 GPIO39 5

23 BOOT GPIO0 25

24 NC NC --

Documentation Center

RF Specifications
BLE Radio
Receiver

Pin number WisBlock Function Pin name Pin number ESP32

25 SPI_CS GPIO32 8

26 SPI_CLK GPIO33 9

27 SPI_MISO GPIO35 7

28 SPI_MOSI GPIO25 10

29 IO1 GPIO14 13

30 IO2 GPIO27 12

31 IO3 GPIO26 11

32 IO4 GPIO23 37

33 UART1_TX GPIO21 33

34 UART1_RX GPIO19 31

35 I2C2_SDA GPIO15 23

36 I2C2_SCL GPIO18 30

37 IO5 GPIO13 16

38 IO6 GPIO22 36

39 GND GND 1, 15, 38

40 GND GND 1, 15, 38

Parameter Conditions Min Typ Max Unit

Sensitivity @30.8% PER - -94 -93 -92 dBm

Maximum received signal @30.8% PER - 0 - - dBm

Co-channel C/I - - +10 - dBm

Intermodulation - -36 - - dBm

Documentation Center

Transmitter

WiFi Radio

Electrical Characteristics
Absolute Maximum Ratings

Recommended Operating Conditions

Mechanical Characteristics

Parameter Conditions Min Typ Max Unit

RF transmit power - - 0 0 dBm

Gain control step - - 3 - dBm

RF power control range - -12 - +9 dBm

Drift rate - - 0.7 - kHz/50us

Drift - - 2 - kHz

Parameter Condition Min Typ Max Unit

Operating frequency range - 2412 - 2484 MHz

TX power 11b mode 17.5 18.5 20 dBm

TX power 11n MCS7 12 13 14 dBm

Sensitivity 11b, 1 Mbps - -97 - dBm

Symbol Description Min. Typical Max. Unit

VBAT Power supply for the module 0.5 - 4.2 V

VDD Power supply for ESP32 module 2.3 3.3 3.6 V

Iout Step down IC output current - - 700 mA

Symbol Description Min. Typical Max. Unit

VBAT Power supply for the module 3.1 - 4.2 V

VDD Power supply for ESP32 module 3.0 3.3 3.6 V

TOPR Operation Temperature -40 - 85 ℃

Documentation Center

Board Dimensions

Figure 6: RAK11200 Board Dimensions

WisConnector PCB Layout

Figure 7: WisConnector PCB footprint and recommendations

Schematic Diagram

Documentation Center

Figure 8: RAK11200 Schematic Diagram

RAK11200 is a WisBlock Core module for RAK WisBlock based on Espressif ESP32-WROVER. It is a powerful,

generic WiFi-BLE MCU module that targets a wide variety of applications. There are two CPU cores that can be

individually controlled and the CPU clock frequency is adjustable from 80 MHz to 240 MHz. The low-power deep-

sleep current consumption of the ESP32-WROVER is about 10 uA. This makes the RAK11200 an ultra-low-power

communication solution. RAK11200 can be comfortably programmed with the Arduino™ IDE or PlatformIO.

Last Updated: 11/4/2021, 5:44:19 AM

Documentation Center

RAK11200 Quick Start Guide

Figure 1: WisBlock-Assembly

Content
Introduction

Safety information

Hardware Setup

Arduino IDE BSP Installation

PlatformIO Installation

Introduction
WisBlock is an amazing product built by RAK company for the IoT industry. It can build circuits like building blocks

quickly to realize your idea, and through high-speed connectors and fasteners interconnection, it can directly

compose reliable industrial products.

WisBlock consists of WisBlock Base, WisBlock Core, WisBlock Sensor, and WisBlock IO.

RAK5005-O is the WisBlock Base board which can be connected with WisBlock Core and WisBlock IO through

the connector of the board and provides direct data bus interconnection. WisBlock Base module also integrates

the power supply circuit to realize low power battery power supply. In order to facilitate users, WisBlock Base has

reserved USB ports, indicator lights, keys, and extended IO interfaces.

RAK11200 is the WisBlock Core board which consists of ESP32 WROVER. It supports WiFi and BLE functions,

and supply a rich resource MCU so that you can program it if you want.

WisBlock is not only a functional test capable product in the product development verification stage but also

industrial products oriented to mass production. It uses a high-speed connector to ensure the integrity of the

signal. At the same time, it is equipped with a fastening screw, which can be used in a vibration environment. And

WisBlock can be used reliably in various civil and industrial scenarios through rigorous reliability tests.

Documentation Center

WisBlock uses a compact stacked hardware design, which integrates various computing, connecting, and sensor

circuits in the size of 60*30 mm. The compact size makes it easy for users to build in various customized housings

to achieve complete products. RAK also has a series of housings for WisBlock modules, which can meet the

requirements of various protection levels.

Safety Information
Read the following items carefully so that WisBlock can be used safely.

Hardware
Use WisBlock according to its hardware specification, including the power supply, the temperature of use, the

battery, and so on.

Don't submerge WisBlock in liquids, and don't place WisBlock where water can reach.

Don't power WisBlock using other power sources which RAK hasn't suggested.

Some WisBlock modules require higher current that can't be provided by USB port alone. In this case, it is

recommended to connect a battery to WisBlock Base Board.

⚠ WARNING

Battery can cause harm if not handled properly.

Only 3.7-4.2 V Rechargeable LiPo batteries are supported. It is highly recommended not to use other

types of batteries with the system unless you know what you are doing.

If a non-rechargeable battery is used, it has to be unplugged first before connecting the USB cable to

the USB port of the board to configure the device. Not doing so might damage the battery or cause a

fire.x

Make sure the battery wires match the polarity on the RAK WisBlock Base Board. Not all batteries have

the same wiring.

Only 5 V solar panels are supported. Do not use 12 V solar panels. It will destroy the charging unit and

eventually other electronic parts.

There is already a bootloader in every WisBlock core board MCU when you receive the device so that you don't

need to flash the bootloader again. Normally, you only need to use it directly or upload new code into it through

Arduino IDE. If you accidentally erase the bootloader, contact RAK forum.

Don't unplug any hardware connector when you are uploading code into it, otherwise WisBlock may become

unresponsive.

Hardware Setup
The RAK5005-O board offers several GPIO's on solder pads or the WisBlock Sensor or WisBlock IO modules.

These GPIO's are named IO1 to IO6 and SW1. These GPIO's are connected to GPIO's of the RAK11200 module.

The GPIO assignments are defined in the RAK11200 variant.h file of the Arduino BSP.

RAK5005-O GPIO mapping to RAK11200 GPIO ports

RAK5005-O <-> ESP32

IO1 <-> Arduino GPIO number 14

IO2 <-> Arduino GPIO number 27

IO3 <-> Arduino GPIO number 26

IO4 <-> Arduino GPIO number 23

IO5 <-> Arduino GPIO number 13

https://docs.rakwireless.com/Product-Categories/WisBlock/RAK5005-O/Datasheet/#battery-connector
https://docs.rakwireless.com/Product-Categories/WisBlock/RAK11200/Quickstart/forum.rakwireless.com

Documentation Center

IO6 <-> Arduino GPIO number 22

SW1 <-> Arduino GPIO number 34

A0 <-> Arduino GPIO number 36

A1 <-> Arduino GPIO number 39

SPI_CS <-> Arduino GPIO number 32

LED1 <-> Arduino GPIO number 12

LED2 <-> Arduino GPIO number 2

Defined names from variant.h

Software Setup
Getting started with RAK11200 is simple and straightforward. The first thing you need is to set up your software

development environment. We have made detailed tutorials on how to set up Arduino™ IDE and the PlatformIO

extension to be ready to use the WisBlock 11200.

Arduino IDE BSP Installation
Install RAKWireless ESP32 BSP on Arduino Boards
Manager
1. To add board support for RAK11200 on Arduino, start Arduino IDE and open the Preferences window (File >

Preferences).

Figure 2: Arduino File Preferences Window

#define WB_IO1 14

#define WB_IO2 27

#define WB_IO3 26

#define WB_IO4 23

#define WB_IO5 13

#define WB_IO6 22

#define WB_SW1 34

#define WB_A0 36

#define WB_A1 39

#define WB_CS 32

#define WB_LED1 12

#define WB_LED2 2

Documentation Center

2. In the Preferences window, look for Additional Boards Manager URLs and click the icon on the right side.

Figure 3: Arduino Preferences

3. Copy https://raw.githubusercontent.com/RAKwireless/RAKwireless-Arduino-BSP-

Index/main/package_rakwireless_index.json and paste it into the new window.

If there is already an URL from another manufacturer in that field, paste the above URL into a new line. Then

press the OK button.

Figure 4: Arduino Additional Boards Manager URLs

4. Next, open the Boards Manager in the menu Tools.

Documentation Center

Figure 5: Arduino Boards Manager

5. Type RAK in the search bar. The RAKwireless WisBlock Core modules will be shown in the window.

Figure 6: Arduino Tools Boards Manager

6. Select RAKwireless ESP32 Boards and click on Install button.

Depending on your connection speed, the installation can take some time. Just be patient.

Compiling a Project
1. The compiling process is very easy, what you need to do is just to click the Verify/Compile button on Arduino

IDE.

Documentation Center

Figure 7: Arduino Verify/Compile

2. After compiling successfully, you can see some information in the output message area, and the state is "Done

compiling.":

Figure 8: Arduino Done compiling

Now, you can connect your WisBlock hardware with your PC, and upload the code into it.

Uploading to WisBlock
Make sure that your WisBlock hardware has been connected with your PC correctly, and your PC has recognized

WisBlock hardware successfully. If it is, you can select the board and port now, as shown in Figure 9:

Documentation Center

Figure 9: Arduino Tools Configuration

1. Before uploading your sketch, short circuit BOOT0 and GND pin and press the reset button. Then click the

Upload button using the configuration below.

Figure 10: Force ESP32 Download mode

2. After uploading successfully, push the reset button. Then you can see some information, as shown in Figure 11

in the output message area. That means you've uploaded the code into RAK11200 successfully.

Board:"Wiscore RAK11200 board"

Upload Speed:"921600"

Flash Frequency:"80MHZ"

Flash Mode:"QIO"

Partition Scheme:"Default 4MB with spiffs(1.2MB APP/1.5MB SPIFFS)"

Core Debug Level:"No"

Documentation Center

Figure 11: Arduino Done uploading

📝 NOTE

In case of upload error, the Upload Speed must be reduced.

Library Management on Arduino
In the Arduino IDE, the Library Manager and the libraries installed are available for every Arduino sketch.

Reserved GPIO Pins
It is not recommended to use the reserved GPIO pins. Some GPIO’s cannot be used freely, as they are already

assigned to module peripherals or have special functions during booting.

Bootstraping Pins
GPIO0 pin is used as a bootstrapping pin and should be low to enter UART download mode. Make sure it is not

pulled low by a peripheral device during boot or the firmware will not start.

GPIO2 pin is used as a bootstrapping pin, and should be low to enter UART download mode. Make sure it is not

pulled high by a peripheral device during boot or you will not be able to flash a firmware to the module.

GPIO12 is used as a bootstrapping pin to select the output voltage of an internal regulator which powers the

flash chip (VDD_SDIO). This pin has an internal pulldown so if left unconnected it will read low at reset

(selecting default 3.3 V operation). Make sure it is not pulled high by a peripheral device during boot or the

module might not be able to start.

GPIO15 can be used to stop debug output on Serial during boot. If pulled low, there will be no output on the

Serial port during the boot process. This can be helpful in battery-powered applications where you do not want

to use the Serial port at all to reduce power consumption.

SPI Flash Integrated Pins

Documentation Center

GPIO06 to GPIO11 are connected to the integrated SPI flash on the ESP32-WROVER chip and are not

recommended for other uses.

Input Only Pins
GPIO34-39 can only be set as input mode and do not have software pullup or pulldown functions.

PSRAM Pins
GPIO16 and 17 are used for the RAK11200 Pseudo static RAM (PSRAM).

ESP32 Basic Over The Air (OTA)
OTA stands for Over-The-Air. This feature allows uploading a new program to RAK11200 using WiFi instead of

requiring the user to connect the RAK11200 to a computer via USB to perform the update. See the detailed

instructions on the link below.

ESP32 Basic OTA in Arduino IDE

If you already installed the RAKwireless ESP32, then the BasicOTA sketch has also been installed.

1. Open the Arduino IDE -> File -> Examples-> ArduinoOTA-> BasicOTA.

Figure 12: Arduino OTA Sketch

2. Modify the following two variables with your network credentials, so that RAK11200 can establish a WiFi

connection with the existing network. Then save and upload the BasicOTA sketch.

3. Now, upload a new sketch using over the air port.

4. Copy the blink LED sketch below to your Arduino IDE.

const char* ssid = "..........";

const char* password = "..........";

https://lastminuteengineers.com/esp32-ota-updates-arduino-ide/

Documentation Center

The delay() for blinking builtin LED is not used because RAK11200 ESP32-WROVER pauses your program during

the delay() routine. If the next OTA request is generated while the program is paused waiting for the delay() to

pass, the OTA request will be lost.

5. Open Arduino IDE and select Tools->Port->esp32-xxxx, as shown in Figure 13.

Figure 13: Arduino OTA WiFi Port

6. Finally, click on Upload button.

Within a few seconds, the new sketch will be uploaded using over the air port.

ESP32 Deep Sleep

unsigned long previousMillis = 0; // will store last time LED was updated

const long interval = 1000; // interval at which to blink (milliseconds)

int ledState = LOW; // ledState used to set the LED

void setup()

{

 pinMode(WB_LED1, OUTPUT);

}

void loop()

{

 //loop to blink without delay

 unsigned long currentMillis = millis();

 if (currentMillis - previousMillis >= interval) {

 // save the last time you blinked the LED

 previousMillis = currentMillis;

 // if the LED is off turn it on and vice-versa:

 ledState = not(ledState);

 // set the LED with the ledState of the variable:

 digitalWrite(WB_LED1, ledState);

 }

}

Documentation Center

To achieve maximum power saving during deep sleep, it is necessary to switch off Bluetooth and WiFi before

calling esp_deep_sleep_start().

ESP32 Wiki Content
Arduino core for ESP32 Wiki content

Installation of BSP in PlatformIO
Install PlatformIO
Download and install the Visual Studio Code which is a great and open source tool.

Visual Studio Code

After installing the Visual Studio Code, you can search for PlatformIO and install it in the Extensions item.

Install Espressif 32 Arduino Framework
1. After installing PlatformIO, you can see the PlatformIO icon and click open.

Figure 14: Visual Studio Code PlatformIO extension

2. Open "Platforms" in PlatformIO and search for "Espressif" on Embedded tab.

#include <esp_wifi.h>

#include <esp_bt.h>

...

 esp_wifi_stop();

 esp_bt_controller_disable();

 esp_deep_sleep_start();

https://desire.giesecke.tk/index.php/2018/01/30/esp32-wiki-entries/
https://code.visualstudio.com/

Documentation Center

Figure 15: Espressif Platform

3. You can see there are several items, just click "Espressif 32" item and then "Install".

Figure 16: Espressif Framework

4. Before running the first RAK11200 project on the PlatformIO, you need to ensure that the framework-

arduinoespressif32 is installed. Then import a minimal project named arduino-blink. On PIO Home, click on

"Project Examples".

Documentation Center

Figure 17: PIO Project Examples

5. On "Import Project Example" window type arduino-blink and then click on Import button.

Figure 18: PIO arduino-blink

Add WisBlock Core RAK11200 to the Platform
1. Clone WisBlock repository .

2. Copy the file wiscore_rak11200.json located on folder <cloned_dir>\WisBlock\PlatformIO\RAK11200 to

espressif32 platform folder.

The platform folder path is similar to the following:

Windows: %userprofile%.platformio\platforms\espressif32\boards
Linux (Ubuntu): $HOME/.platformio/platforms/espressif32/boards
Mac OS: /Users/{Your_User_id}/.platformio/platforms/espressif32/boards

git clone https://github.com/RAKWireless/WisBlock.git

https://github.com/RAKWireless/WisBlock

Documentation Center

Add WisBlock Core RAK11200 to the Framework
Copy the folder WisCore_RAK11200_Board located on <cloned_dir>\WisBlock\PlatformIO\RAK11200 to the

variants folder inside the espressif32 package folder.

The espressif32 package folder path is similar to the following:

Windows: %userprofile%.platformio\packages\framework-arduinoespressif32\variants
Linux (Ubuntu): $HOME/.platformio/packages/framework-arduinoespressif32/variants
Mac OS: /Users/{Your_User_id}/.platformio/packages/framework-arduinoespressif32

Library Management on PlatformIO
The PlatformIO libraries are managed on a per-project basis. You install a library for a specific project and not for

the entire IDE. Thus it is possible to have the same library working with different versions in two different projects.

Last Updated: 1/10/2022, 2:07:11 AM

