RAK13002 Quick Start Guide

Prerequisite

What Do You Need?

Before going through each and every step on using the RAK13002 WisBlock module, make sure to prepare the necessary items listed below:

Hardware

- RAK13002 WisBlock IO Module
- Your choice of WisBlock Base
- Your choice of WisBlock Core
- USB Cable
- Li-Ion/LiPo battery (optional)
- Solar charger (optional)

Software

- Download and install ArduinoIDE.
- To add the RAKwireless Core boards on your Arduino Boards Manager, install the RAKwireless Arduino BSP.

Product Configuration

Hardware Setup

The RAK13002 WisBlock IO Module is designed as an IO extension module that allows you to connect external digital and analog modules to create a customized IoT solution. It supports two I2C interfaces, two UART interfaces, one SPI Interface, six GPIOs, and two ADC interfaces. For more information about RAK13002, refer to the Datasheet.

The RAK13002 WisBlock IO Module can be mounted on the IO slot of the WisBlock Base board, as shown in Figure 1. Also, always secure the connection of the WisBlock module by using compatible screws.

Assembling and Disassembling of WisBlock Modules
Assembling

As shown in Figure 2, the location for the IO slot is properly marked by silkscreen. Follow carefully the procedure defined in RAK5005-O module assembly/disassembly instructions to attach a WisBlock module. Once attached, carefully fix the module with three pieces of M1.2 x 3 mm screws.

![Figure 2: RAK13002 assembly to WisBlock Base](image)

Disassembling

The procedure in disassembling any type of WisBlock modules is the same.

1. First, remove the screws.

![Figure 3: Removing screws from the WisBlock module](image)

2. Once the screws are removed, check the silkscreen of the module to find the correct location where force can be applied.

![Figure 4: Detaching silkscreen on the WisBlock module](image)

3. Apply force to the module at the position of the connector, as shown in Figure 5, to detach the module from the baseboard.
If you will connect other modules to the remaining WisBlock Base slots, check on the WisBlock Pin Mapper tool for possible conflicts.

After all this setup, you can now connect the battery (optional) and USB cable to start programming your WisBlock Core.

Software Configuration and Example

The RAK13002 module exposes the IO pins, SPI, I2C, and UART communication ports. You can use these ports to connect sensors or modules, digital I/O, analog I/O, and slave devices. These ports are routed to the WisBlock Core through the IO connector.

For RAK13002, the accessible GPIO pin assignments are defined as follows in the Arduino IDE:

- `WB_IO1` for IO1, GPIO1 pin
- `WB_IO2` for IO2, GPIO2 pin
- `WB_IO3` for IO3, GPIO3 pin
- `WB_IO4` for IO4, GPIO4 pin
- `WB_IO5` for IO5, GPIO5 pin
- `WB_IO6` for IO6, GPIO6 pin
- `WB_SW1` for SW1 pin
- `WB_A0` for AIN1, ADC Input pin
- `WB_A1` for AIN1, ADC Input pin
I2C Connection on RAK13002

This is just an example and illustration on how to use the RAK13002 for external I2C sensors, modules, or devices. You can use any I2C device as long as it operates at 3.3 V.

![Diagram of I2C Connection](image-url)

Figure 6: Connecting the RAK13002 to the I2C backpack of a 16x2 LCD

1. You need to select first the WisBlock Core you have, as shown in **Figure 7** to **Figure 9**.

<table>
<thead>
<tr>
<th>Row/Column</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>VCC</td>
<td>VCC</td>
<td>VCC</td>
<td>VCC</td>
</tr>
<tr>
<td>Row 2</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>Row 3</td>
<td>IO1</td>
<td>SCL1</td>
<td>TXD0</td>
<td>CS</td>
</tr>
<tr>
<td>Row 4</td>
<td>IO3</td>
<td>SDA1</td>
<td>RXD0</td>
<td>SDI</td>
</tr>
<tr>
<td>Row 5</td>
<td>IO4</td>
<td>SCL2</td>
<td>TXD1</td>
<td>SDO</td>
</tr>
<tr>
<td>Row 6</td>
<td>IO5</td>
<td>SDA2</td>
<td>RXD1</td>
<td>SCK</td>
</tr>
<tr>
<td>Row 7</td>
<td>IO6</td>
<td>LED1</td>
<td>AIN0</td>
<td>RST</td>
</tr>
<tr>
<td>Row 8</td>
<td>IO7</td>
<td>LED2</td>
<td>AIN1</td>
<td>SW1</td>
</tr>
</tbody>
</table>
Figure 7: Selecting RAK4631 as WisBlock Core

Figure 8: Selecting RAK11200 as WisBlock Core
2. On the Arduino IDE, go to Sketch > Include Library > Manage Libraries. The Library Manager should open, then install the LiquidCrystal I2C library, as shown in Figure 10.

3. After successful installation of the library, you can now copy the following sample code into your Arduino IDE:
#include LiquidCrystal_I2C.h

#include Wire.h

//Initialize the liquid crystal library
//the first parameter is the I2C address
//the second parameter is how many rows are on your screen
//the third parameter is how many columns are on your screen
LiquidCrystal_I2C lcd(0x27, 16, 2);

void setup() {
 lcd.init(); //initialize lcd screen
 lcd.backlight(); // turn on the backlight
}

void loop() {

 start_display(); // start
 delay(1000); // wait for a second
 lcd.clear(); // clear the LCD content
 delay(1000); // wait for a second

}

void start_display(){

 lcd.setCursor(0,0); // tell the screen to write on the top row
 lcd.print("RAK13002"); // tell the screen to write “RAK13002” on the top row
 lcd.setCursor(0,1); // tell the screen to write on the bottom row
 lcd.print("EXAMPLE"); // tell the screen to write “EXAMPLE” on the bottom row
}

4. Then select the right Serial Port and upload the code, as shown in Figure 11 and Figure 12.

Figure 11: Selecting the correct Serial Port
5. When you successfully uploaded the sample code, you will now be able to see the “RAK13002 EXAMPLE” in your LCD screen, as shown in Figure 13, which means that the module is properly communicating with the WisBlock core using the I2C protocol.

6. If you are not seeing the same output, check the device's I2C address by using this code:
Your device’s I2C address should be displayed on the Serial Monitor, as shown in Figure 14.
This is just an example and illustration on how to use the GPIO pins of RAK13002 for external sensors, modules, or devices. There are six (6) GPIO pins available on the RAK13002. You can use any of the GPIO pins as long as your modules, sensors, or devices operate at 3.3 V.

1. You need to select first the WisBlock Core you have, as shown in Figure 16 to Figure 18.
Figure 16: Selecting RAK4631 as WisBlock Core

Figure 17: Selecting RAK11200 as WisBlock Core
2. Copy the following sample code into your Arduino IDE:
3. Then select the right Serial Port and upload the code, as shown in Figure 19 and Figure 20.
When you successfully uploaded the sample code, open the Serial Monitor of the Arduino IDE to see the button's reading logs. Try pressing the button, and if you see the logs, as shown in Figure 21, then your module or sensor is properly communicating to the WisBlock core using the Digital Interface.
Analog Input (ADC) Connection on RAK13002

This is just an example and illustration on how to use the ADC pin of RAK13002 for external sensors, modules, or devices. There are two (2) ADC pins available on the RAK13002 that you can use as long as your modules, sensors, or devices operate at 3.3 V.

1. You need to select first the WisBlock Core you have, as shown in Figure 23 to Figure 25.
Figure 23: Selecting RAK4631 as WisBlock Core

Figure 24: Selecting RAK11200 as WisBlock Core
2. Copy the following sample code into your Arduino IDE:

```c
/*
 * Reading ADC pin on RAK13002
 * using Soil Moisture Sensor
 */
#define SS WB_A0 //Soil Moisture Sensor A0 to AIN0 of RAK13002

int sensor_value;

void setup()
{
    Serial.begin(9600); // Setting up Serial Monitor to read in 9600 baudrate
}

void loop()
{
    readSensor();
    delay(1000); //Read sensor value and print every 1 second.
}

void readSensor()
{
    sensor_value = analogRead(SS);
    Serial.println(sensor_value);
}
```

3. Then select the right Serial Port and upload the code, as shown in Figure 26 and Figure 27.
4. When you successfully uploaded the sample code, open the Serial Monitor of the Arduino IDE to see the module's reading logs. If you see the logs, as shown in Figure 28, then your module or sensor is properly communicating to the WisBlock core using the Analog Interface.
<table>
<thead>
<tr>
<th>Time</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>02:37:30.362</td>
<td>933</td>
</tr>
<tr>
<td>02:37:31.359</td>
<td>941</td>
</tr>
<tr>
<td>02:37:32.369</td>
<td>941</td>
</tr>
<tr>
<td>02:37:33.364</td>
<td>944</td>
</tr>
<tr>
<td>02:37:34.358</td>
<td>940</td>
</tr>
<tr>
<td>02:37:35.354</td>
<td>942</td>
</tr>
<tr>
<td>02:37:36.371</td>
<td>941</td>
</tr>
<tr>
<td>02:37:37.366</td>
<td>944</td>
</tr>
<tr>
<td>02:37:38.357</td>
<td>942</td>
</tr>
<tr>
<td>02:37:39.347</td>
<td>940</td>
</tr>
<tr>
<td>02:37:40.358</td>
<td>939</td>
</tr>
<tr>
<td>02:37:41.353</td>
<td>939</td>
</tr>
<tr>
<td>02:37:42.354</td>
<td>939</td>
</tr>
<tr>
<td>02:37:43.353</td>
<td>942</td>
</tr>
<tr>
<td>02:37:44.354</td>
<td>941</td>
</tr>
</tbody>
</table>

Figure 28: FC-28 Soil Moisture Hygrometer data logs

Last Updated: 7/29/2022, 10:17:19 PM
RAK13002 WisBlock Adaptor Module Datasheet

Overview

Description

The RAK13002 is a WisBlock Core adaptor module that can be mounted to the IO slot of the WisBlock Base board. This module exposed all WisBlock Core signals such as I2C, SPI, UART, GPIO, and ADC to standard 2.54 mm pitch pin header for easy integration of external components and devices.

Features

- Supports two I2C interfaces
- Supports two UART interfaces
- Supports one SPI interface
- Supports up to six (6) GPIOs
- Supports two (2) ADC interfaces
- 3.3 V power supply interfaces
- Backup battery (super cap) can keep the RTC running for up to 7 days (tested in lab)
- Module size: 25X35 mm

Specifications

Overview

Mounting

The RAK13002 module can be mounted to the IO slot of the WisBlock Base board. Figure 1 shows the mounting mechanism of the RAK13002 on a WisBlock Base module.

![Figure 1: RAK13002 WisBlock Adaptor Module Mounting](image)

Hardware

The hardware specification is categorized into four parts. It discusses the pinouts of the module and its corresponding functions and diagrams. It also covers the electrical and mechanical parameters that include the tabular data of the functionalities and standard values of the RAK13002 WisBlock Adaptor Module.

Pin Definition

The RAK13002 WisBlock Adaptor Module comprises a standard WisConnector connector. The WisConnector allows the RAK13002 module to be mounted to a WisBlock Base board. The pin order of the connector and the pinout definition is shown in Figure 2.
Electrical Characteristics

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Nom.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>Power supply</td>
<td>3.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Mechanical Characteristics

Board Dimensions

Figure 3 shows the dimensions and the mechanic drawing of the RAK13002 module.

![Figure 3: RAK13002 WisBlock Adaptor Module Mechanic Drawing](image)

WisConnector PCB Layout
Schematic Diagram

Adaptor

Figure 5 shows the RAK13002 adaptor module schematic. VCC: 3.3 V power supply.

Figure 5: RAK13002 WisBlock Adaptor Schematic

Last Updated: 6/14/2022, 8:07:39 AM