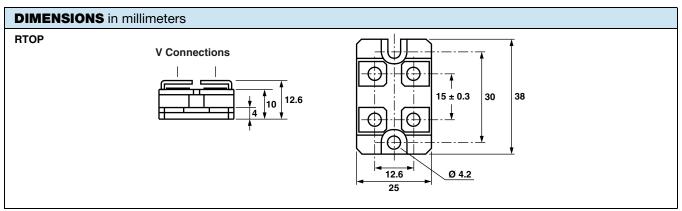


Power Resistors for Mounting Onto a Heatsink Thick Film Technology

FEATURES

- 1 % tolerance available
- High power rating = 200 W
- Wide ohmic value range = 0.046 Ω to 1 M Ω
- Non inductive
- · Easy mounting
- · Low thermal radiation of the case
- Standard isotope case (SOT-227 B)
- · Material categorization: for definitions of compliance please see www.vishay.com/doc?99912



DESIGN SUPPORT TOOLS

click logo to get started

This series of thick film power resistors include modules which can incorporate up to 2 different resistor values in the same SOT-227B package. Two types of terminations are available along with a 4 terminal device for measurement applications in the case of the single resistor version. This product range benefits from Vishay Sfernice's experience in thick film power resistor technology i.e. high power: volume ratio, low tolerance or individual resistors and excellent overload capabilities (due to the trimming technique).

Note

• Tolerances unless otherwise specified: ± 0.3 mm

STANDARD ELECTRICAL SPECIFICATIONS							
MODEL	SIZE	$\begin{array}{c} \textbf{RESISTANCE RANGE} \\ \Omega \end{array}$	RATED POWER P _{25°C} W	TOLERANCE ± %	TEMPERATURE COEFFICIENT ± ppm/°C		
DRTOP50		0.091 to 1M	50	1, 2, 5, 10	150, 300		
RTOP100 DRTOP100 RTOP200	SOT-227B	0.046 to 1M	100	1, 2, 5, 10	150, 300		
		0.046 to 1M	200	1, 2, 5, 10	150, 300		

MECHANICAL SPECIFICATIONS						
Mechanical Protection	Insulated case					
Resistive Element	Cermet					
Substrate	Alumina on insulated base					
End Connections	V connections: screw M4 x 6					
Tightening Torque Connections	1 Nm					
Tightening Torque Heatsink	2 Nm					
Weight	30 g max.					

ENVIRONMENTAL SPECIFICATIONS						
Temperature Range -55 °C to +125 °C						
Climatic Category	55 / 125 / 56					

TECHNICAL SPECIFICATIONS						
Temperature Coefficient (-55 °C to +125 °C)	Standard	± 300 ppm/°C (R < 1) ± 150 ppm/°C (R > 1)				
Insulation Resistance		$> 10^6 \mathrm{M}\Omega$				

Revision: 06-Apr-18 Document Number: 50045

Vishay Sfernice

PERFORMANCE							
TESTS	CONDITIONS	REQUIREMENTS					
Momentary Overload	IEC 60115-1 2.5 Pr/5 s <i>U</i> _S < 2 U _L	< ± (0.25 % + 0.05 Ω)					
Rapid Temperature Change	IEC 60115-1 5 cycles, -55 °C, +125 °C	< ± (0.25 % + 0.05 Ω)					
Load Life	IEC 60115-1 Pr at 25 °C, 1000 h	< ± (0.5 % + 0.05 Ω)					
Humidity (Steady State)	IEC 60115-1 / IEC 60068-2-3 Test Ca 56 days, 95 % RH / 40 °C	< ± (0.5 % + 0.05 Ω)					

SPECIAL FEATURES						
MODEL	RTOP 200	RTOP 100	DRTOP 100	DRTOP 50		
Power Rating at +25 °C Chassis Mounted Resistors Unmounted Resistors	200 W 5 W	100 W 5 W	100 W 3.5 W	50 W 3.5 W		
Thermal Resistance (per Resistor)	0.5 °C/W	1 °C/W	0.5 °C/W	1 °C/W		
Limiting Voltage U _L	1500 V	1500 V	500 V	500 V		
Dielectric Strength ⁽¹⁾ Connections/Chassis	2500 V, 1 min 10 mA max.					
Dielectric Strength ⁽¹⁾ Connections/Resistors	-	-	2500 V, 1 min 10 mA max.	2500 V, 1 min 10 mA max.		
Ohmic Value Range	0.046 Ω	to 1 MΩ	0.091 Ω to 1 MΩ			
Tolerance	± 1 % to	o ± 10 %	± 1 % to ± 10 %			
Electrical Diagrams				32 J 31 J		
	Shunt	version				

Note

(1) MIL-STD-202 Method 301

www.vishav.com

Vishay Sfernice

RECOMMENDATIONS FOR MOUNTING ONTO A HEATSINK

- Surfaces in contact must be carefully cleaned
- The heatsink must have an acceptable flatness: From 0.05 mm to 0.1 mm/100 mm
- Roughness of the heatsink must be around 6.3 µm. In order to improve thermal conductivity, surfaces in contact (alumina, heatsink) should be coated with a silicone grease (type SI 340 from Rhône-Poulenc or Dow 340 from Dow Corning)

Tightening Torque on Heatsink	RTOP
Tightening Torque on Heatsink	2 Nm

• For the electrical connections, it is recommended to use M4 x 6 screws and if necessary a washer of 1mm thickness. The recommended screw tightening torque is 1 Nm

CHOICE OF THE HEATSINK

The user must choose the heatsink according to the working conditions of the component (power, room temperature). Maximum working temperature must not exceed 125 °C. The dissipated power is simply calculated by the following ratio:

$$P = \frac{\Delta T}{R_{TH (j-c)} + R_{TH (c-h)} + R_{TH (h-a)}}$$

P: Expressed in W

ΔT: Difference between maximum working temperature and room temperature

R_{TH (j - c)}: Thermal resistance value measured between resistive layer and outer side of the resistor. It is the thermal resistance of the component (see table Special Features)

R_{TH (c - h)}: Thermal resistance value measured between outer side of the resistor and upper side of the heatsink
This is the thermal resistance of the interface (grease, thermal pad), and the quality of the fastening device

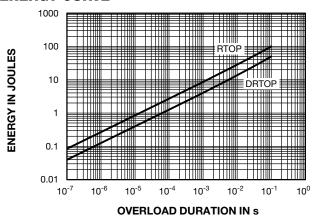
R_{TH (h - a)}: Thermal resistance of the heatsink

Example:

R_{TH (c - a)}: For RTOP 200 power rating 130 W at ambient temperature +30 °C.

Thermal resistance (see table 1) R_{TH (i - c)}: 0.5 °C/W

$$\begin{split} &\Delta T = 125~^{\circ}C - 30~^{\circ}C \leq 95~^{\circ}C \\ &R_{TH~(j~-c)} + R_{TH~(c~-h)} + R_{TH~(h~-a)} = \frac{\Delta T}{P} = \frac{95}{130} = 0.73~^{\circ}C/W \\ &R_{TH~(j~-c)} = 0.112~^{\circ}C/W \\ &R_{TH~(c~-h)} + R_{TH~(h~-a)} = 0.73~^{\circ}C/W - 0.5~^{\circ}C/W \leq 0.23~^{\circ}C/W \end{split}$$


OVERLOADS

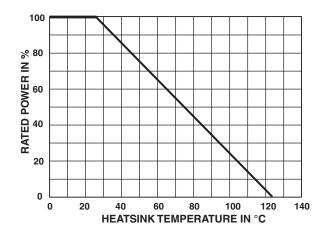
The applied power is $2.5 \times \text{rated}$ power for $5 \times \text{s}$ with a max. voltage of $2 \times \text{nominal}$ voltage.


Accidental overload: The values indicated in the graph below are applicable to resistors in air or mounted onto a heatsink.

In case of multi-resistor devices, (DRTOP, TROP and QROP) the results apply to each resistor value in the device.

ENERGY CURVE

POWER CURVE



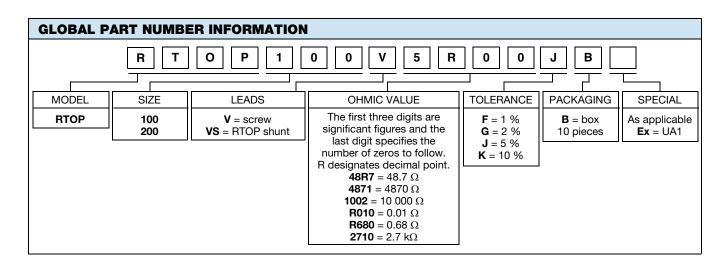
MARKING

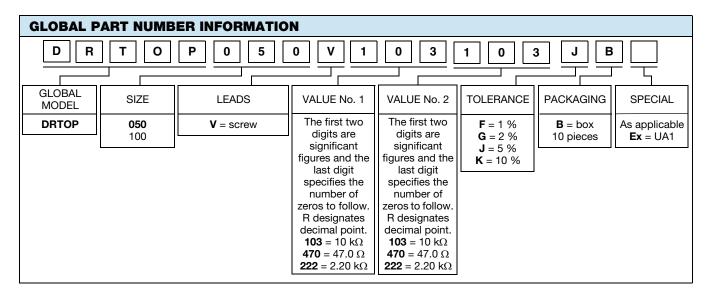
Series, style, ohmic value (in), tolerance (in %), manufacturing date, Vishay Sfernice trademark.

POWER RATING

The temperature of the heater should be maintained in the limit specified. To improve the thermal conductivity, surfaces in contact should be laid on with a silicon grease and the torque applied on the screw for tightening should be around 2 Nm.

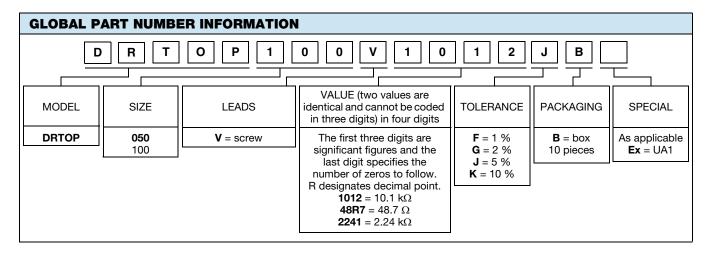
PACKAGING


Box of 10 units



Vishay Sfernice

ORDERING INFORMATION										
RTOP	200	5U	± 1	%	±	%	V			
		г —			. — —	_ ¬				
		1		1		 	.,	2007	2010	
DRTOP	50	150U	5 %	15U		5 %	V	XXX	BO10	е
				R1	T1	R2				
MODEL	STYLE	OHMIC VALUE	ABSO	LUTE TOL RESIS		PER	CONNECTIONS	CUSTOM DESIGN	PACKAGING	LEAD (Pb)-FREE
RTOP DRTOP	100 50		Optional ± 1 % ± 2 % ± 5 % ± 10 %		e precise ach resisto		V: screw VS: RTOP shunt	Optional		



www.vishay.com

Vishay Sfernice

RELATED DOCUMENTS						
APPLICATION NOTES						
Potentiometers and Trimmers	www.vishay.com/doc?51001					
Guidelines for Vishay Sfernice Resistive and Inductive Components	www.vishay.com/doc?52029					

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.