

SJxx16xx Series

Description

This SJxx16xx high junction temperature SCR series is ideal for uni-directional switch applications such as phase control in heating, motor speed controls, converters/ rectifiers and inrush current controllers.

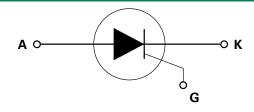
These SCRs offer low gate current trigger levels of 6 mA, 10 mA, or 30 mA at approximately 1.5V.

Features & Benefits

- Halogen free and RoHS compliant
- 150°C maximum junction temperature
- Surge capability up to 225A at 60 Hz half cycle

Agency Approvals

AGENCY	AGENCY FILE NUMBER
71 °	E71639*


* - L Package Only

Applications

Typical applications include AC Generator (ACG) rectifiers, battery voltage regulators, generic converters and inrush current controller in various AC and DC applications. Additional applications include controls for power tools, home/brown good and white goods appliances.

Internally constructed isolated packages are offered for ease of heat sinking with high isolation voltage.

Schematic Symbol

Main Features

Symbol	Value	Unit
I _{T(RMS)}	16	А
V_{DRM}/V_{RRM}	400 or 600	V
I _{GT}	6, 10 or 30	mA

Absolute Maximum Ratings — Standard SCRs

Symbol	Parameter	Test Conditions		Value	Unit	
V_{DRM}/V_{RSM}	Peak non-repetitive blocking voltage	Pw=10	00 μs	V _{DRM} /V _{RRM} +100	V	
		SJxx16Lx	T _C = 110°C	16		
I _{T(RMS)}	RMS on-state current	SJxx16Rx SJxx16Nx	T _c = 135°C	16	А	
		SJxx16Lx	T _C = 110°C	10		
I _{T(AV)}	Average on-state current	SJxx16Rx SJxx16Nx	T _C = 135°C	10	А	
	Peak non-repetitive surge current	single half cycle; $f = 50Hz$; T_J (initial) = 25°C		188	А	
^I TSM	r eak non-repetitive surge current	single half cycle; f = 60Hz; T _J (initial) = 25°C		225		
l²t	I²t Value for fusing	$t_{p} = 8.3$	3 ms	210	A²s	
di/dt	Critical rate of rise of on-state current	f = 60 Hz ; T _J = 150°C		125	A/µs	
I _{GM}	Peak gate current	T _J = 150°C		3	А	
P _{G(AV)}	Average gate power dissipation	T _J = 150°C		0.6	W	
T _{stg}	Storage temperature range	Storage temperature range			°C	
T _J	Operating junction temperature range			-40 to 150	°C	

Note: xx=voltage/10, x=sensitivity

©2018 Littelfuse, Inc.

Specifications are subject to change without notice. Revision: 12/11/18

Downloaded from Arrow.com.

Characteristics (T.	

Symbol	Test Conditions	SJxx16x	SJxx16x1	SJxx16x2	Unit	
1	$V_D = 12V$; $R_L = 60 \Omega$	MIN.	8	2	5	mA
I _{GT}		MAX.	30	6	10	mA
V _{GT}		MAX.	1.5	1.5	1.5	V
dv/dt	$V_D = 67\%V_{DRM}$; gate open; $T_J = 125$ °C	MIN.	800	70	500	V/µs
αν/αι	$V_D = 67\% V_{DRM}$; gate open; $T_J = 150$ °C		400	-	200	ν/μ5
V _{GD}	$V_D = V_{DRM} R_L = 3.3 \text{ k}\Omega T_J = 110^{\circ}\text{C}$	MIN.	0.2	0.2	0.2	V
I _H	I _T = 200mA (initial)	MAX.	75	15	35	mA
t _q	I_{τ} =2A; t_{ρ} =50μs; dv/dt=5V/μs; di/dt=-30A/μs	MAX.	40	40	40	μs
t _{gt}	$I_G = 2 \times I_{GT}$ PW = 15 μ s $I_T = 32A$	TYP.	2	2	2	μs

Note: xx=voltage/10, x=package

Static Characteristics							
Symbol		Value	Unit				
V _{TM}	Con	Component $I_T = 32A$; $t_p = 380 \mu s$ MAX.			V		
	$V_{DRM} = V_{RRM}$	T _J = 25°C		10			
I _{DRM} / I _{RRM}		T _J = 125°C	MAX.	1000	μΑ		
		T _J = 150°C		3000			

Thermal Resistances						
Symbol	Parameter		Value	Unit		
R _{e(JC)}	Junction to case (AC)	SJxx16Rx SJxx16Nx	1.0	°C/W		
• • • (JC)		SJxx16Lx	2.5	-,		

Note: xx=voltage/10, x=sensitivity

Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature

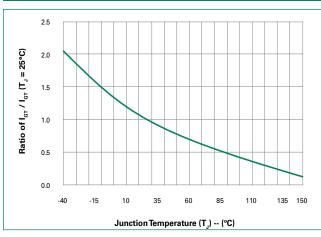
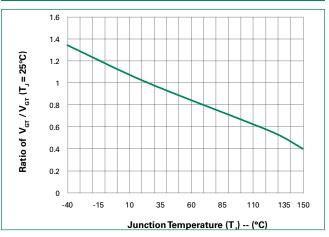



Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature

©2018 Littelfuse, Inc. Specifications are subject to change without notice. Revision: 12/11/18

Figure 3: Normalized DC Holding Current vs. Junction Temperature

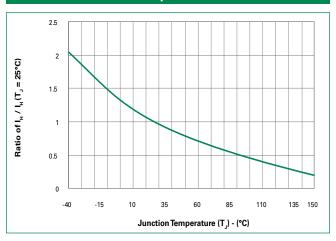


Figure 4: On-State Current vs. On-State Voltage (Typical)

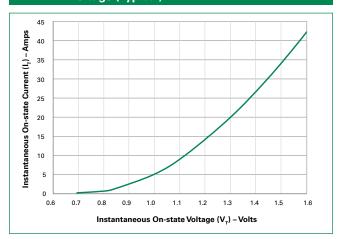
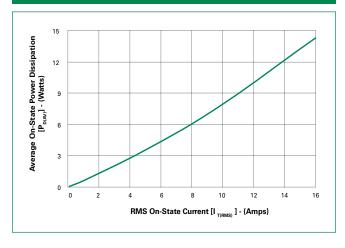
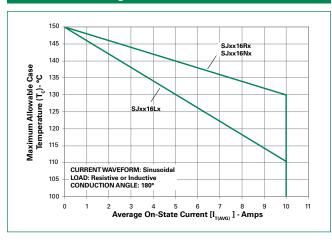


Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

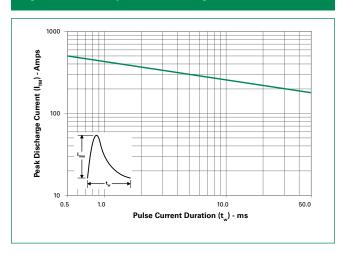

Figure 6: Maximum Allowable Case Temperature vs. RMS On-State Current

Figure 7: Maximum Allowable Case Temperature vs. Average On-State Current

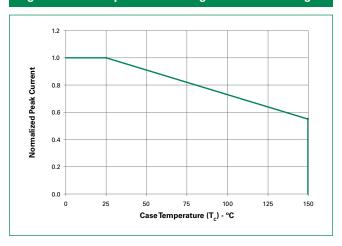
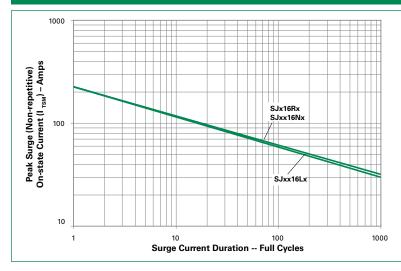


Figure 8: Peak Capacitor Discharge Current



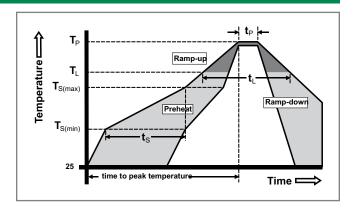
©2018 Littelfuse, Inc. Specifications are subject to change without notice. Revision: 12/11/18

Figure 10: Surge Peak On-State Current vs. Number of Cycles

SUPPLY FREQUENCY: 60 Hz Sinusoidal LOAD: Resistive

RMS On-State Current: $[I_{\text{T(RMS)}}]$: Maximum Rated Value at Specified Case Temperature

Notes:


- 1. Gate control may be lost during and immediately following surge current interval.
- Overload may not be repeated until junction temperature has returned to steady-state rated value.

SJxx16xx Series

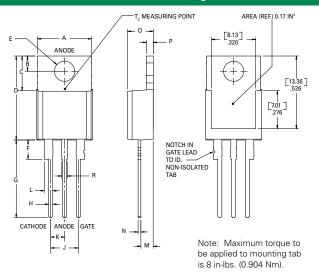
Soldering Parameters

Reflow Cor	dition	Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average rai	mp up rate (Liquidus Temp) (T _L) to	5°C/second max	
T _{S(max)} to T _L	- Ramp-up Rate	5°C/second max	
Reflow	- Temperature (T _L) (Liquidus)	217°C	
Renow	-Time (t _L)	60 - 150 seconds	
Peak Tempe	erature (T _P)	260+0/-5 °C	
Time within (t _p)	n 5°C of actual peak Temperature	20 - 40 seconds	
Ramp-dow	n Rate	5°C/second max	
Time 25°C	to peak Temperature (T _P)	8 minutes Max.	
Do not exc	eed	280°C	

Physical Specifications

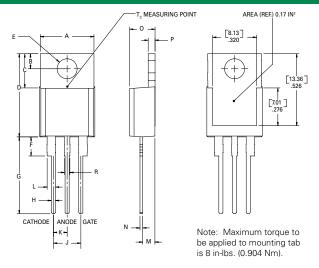
Terminal Finish	100% Matte Tin-plated
Body Material	UL recognized compound meeting flammability rating V-0.
Lead Material	Copper Alloy

Design Considerations


Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

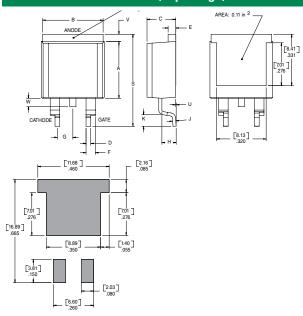
Environmental Specifications

Test	Specifications and Conditions	
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 150°C for 1008 hours	
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -55°C to +150°C; 15-min dwell-time	
Temperature/Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 160V - DC: 85°C; 85% rel humidity	
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C	
Low-Temp Storage	1008 hours; -40°C	
Resistance to Solder Heat	MIL-STD-750 Method 2031	
Solderability	ANSI/J-STD-002, category 3, Test A	
Lead Bend	MIL-STD-750, M-2036 Cond E	
Moisture Sensitivity Level	Level 1, JEDEC-J-STD-020D	



Dimensions — TO-220AB (R-Package) — Non-Isolated Mounting Tab Common with Center Lead

Dimension	Inc	hes	Millimeters	
Dimension	Min	Max	Min	Max
А	0.380	0.420	9.65	10.67
В	0.105	0.115	2.67	2.92
С	0.230	0.250	5.84	6.35
D	0.590	0.620	14.99	15.75
E	0.142	0.147	3.61	3.73
F	0.110	0.130	2.79	3.30
G	0.540	0.575	13.72	14.61
Н	0.025	0.035	0.64	0.89
J	0.195	0.205	4.95	5.21
K	0.095	0.105	2.41	2.67
L	0.060	0.075	1.52	1.91
М	0.085	0.095	2.16	2.41
N	0.018	0.024	0.46	0.61
0	0.178	0.188	4.52	4.78
Р	0.045	0.060	1.14	1.52
R	0.038	0.048	0.97	1.22


Dimensions — TO-220AB (L-Package) — Isolated Mounting Tab

Dimension	Inc	hes	Millim	neters
Dimension	Min	Max	Min	Max
А	0.380	0.420	9.65	10.67
В	0.105	0.115	2.67	2.92
С	0.230	0.250	5.84	6.35
D	0.590	0.620	14.99	15.75
Е	0.142	0.147	3.61	3.73
F	0.110	0.130	2.79	3.30
G	0.540	0.575	13.72	14.61
Н	0.025	0.035	0.64	0.89
J	0.195	0.205	4.95	5.21
K	0.095	0.105	2.41	2.67
L	0.060	0.075	1.52	1.91
М	0.085	0.095	2.16	2.41
N	0.018	0.024	0.46	0.61
0	0.178	0.188	4.52	4.78
Р	0.045	0.060	1.14	1.52
R	0.038	0.048	0.97	1.22

Dimensions - TO- 263AB (N-package) - D2-Pak Surface Mount

Dimension	Inc	hes	Millimeters		
	Min	Max	Min	Max	
А	0.360	0.370	9.14	9.40	
В	0.380	0.420	9.65	10.67	
С	0.178	0.188	4.52	4.78	
D	0.025	0.035	0.64	0.89	
Е	0.045	0.060	1.14	1.52	
F	0.060	0.075	1.52	1.91	
G	0.095	0.105	2.41	2.67	
Н	0.092	0.102	2.34	2.59	
J	0.018	0.024	0.46	0.61	
K	0.090	0.110	2.29	2.79	
S	0.590	0.625	14.99	15.88	
V	0.035	0.045	0.89	1.14	
U	0.002	0.010	0.05	0.25	
W	0.040	0.070	1.02	1.78	

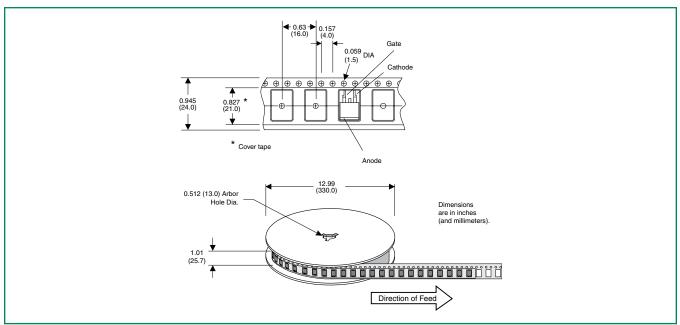
Product Selector

Part Number	Voltage		Cata Canaiti itu	Time	Dealers
	400V	600V	Gate Sensitivity	Туре	Package
SJxx16L	X	X	30mA	Standard SCR	TO-220L
SJxx16R	X	X	30mA	Standard SCR	TO-220R
SJxx16N	X	X	30mA	Standard SCR	TO-263
SJxx16L1	X	X	6mA	Standard SCR	TO-220L
SJxx16R1	X	X	6mA	Standard SCR	TO-220R
SJxx16N1	X	X	6mA	Standard SCR	TO-263
SJxx16L2	X	X	10mA	Standard SCR	TO-220L
SJxx16R2	X	X	10mA	Standard SCR	TO-220R
SJxx16N2	X	X	10mA	Standard SCR	TO-263

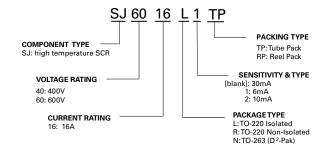
Note: xx = Voltage/10

_			_			
Pa	ck	ina	O	nti	o	ns

Part Number	Marking	Weight	Packing Mode	Base Quantity
SJxx16LxTP	SJxx16Lx	2.2g	Tube	500 (50 per tube)
SJxx16RxTP	SJxx16Rx	2.2g	Tube	500 (50 per tube)
SJxx16NxTP	SJxx16Nx	1.6g	Tube	500 (50 per tube)
SJxx16NxRP	SJxx16Nx	1.6g	Embossed Carrier	500

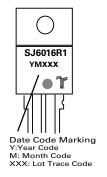

Note: xx=voltage/10, x=sensitivity

©2018 Littelfuse, Inc. Specifications are subject to change without notice. Revision: 12/11/18



TO-263 Embossed Carrier Reel Pack (RP) Specifications

Meets all EIA-481-2 Standards



Part Numbering System

Part Marking System

TO-220 AB - (L and R Package) TO-263 AB - (N Package)

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littleffuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littleffuse.com/disclaimer-electronics.

©2018 Littelfuse, Inc.

Specifications are subject to change without notice. Revision: 12/11/18

Downloaded from Arrow.com.