SKU21474 MÓDULO BLUETOOTH PARA RASPBERRYPI PICO

DESCRIPCIÓN

El Pico-BLE es un módulo de expansión Bluetooth 5.1 de modo dual diseñado para Raspberry Pi Pico, que se controla através de comandos UART AT, con soporte SPP y BLE. Combinado con la RaspberryPi Pico, se puede utilizar para aplicaciones de comunicación inalámbrica Bluetooth.

CARACTERISTICAS

- Cabezal Estándar Raspberry Pi Pico, compatible con la serie Raspberry Pi Pico
- Controlado a través de comandos UART AT, comience rápidamente
- Viene con *Recursos de desarrollo y manual (ejemplos en python como control remoto Bluetooth/WiFi) *[Se incluye en el link al final de este PDF]

Diseño Apilable con Raspberry pi pico

Electrónica

Realizó	JMLM
Revisó	VJS
Fecha	22/03/2022

ESPECIFICACIONES TÉCNICAS

MÓDULO BLUETOOTH	Bluetooth de modo dual a módulo UART				
DISTANCIA DE TRANSMISIÓN	30m (al aire libre)				
COMUNICACIÓN	UART				
ANTENA	Antena PCB integrada				
CACHÉ DE TRANSMISIÓN	Caché UART de 1K bytes,				
se recomienda transmitir menos de 512 bytes por transmisión para SPP					
TASA DE BAUDIOS UART	13 configuraciones diferentes de velocidad de transmisión, 115200 bps por defecto				
VOLTAJE DE ENTRADA	5 V/3,3 V				
CORRIENTE DE FUNCIONAMIENTO	Corriente transitoria de arranque: unos 25 mA durante unos 300 ms;Corriente de estado estable: alrededor de 6 mA, modo de potencia no baja;Corriente de modo de baja potencia: consulte el manual del usuario				
TEMPERATURA DE FUNCIONAMIENTO	-40 °C ~ 80 °C				
HUMEDAD DE FUNCIONAMIENTO	5% ~ 95%				
DIMENSIONES	56,5 × 21 (mm)				

Unit: mm

Realizó	JMLM
Revisó	VJS
Fecha	22/03/2022

SECCIONES DE LA TARJETA

- 1. Módulo Bluetooth
- 2. RT9193-33 Regulador de
- 3. 3.3V Cabecera Raspberry Pi Pico
- 4. Selección de pines de entrada UA
- 5. Antena Bluetooth integrada

GP0	1	Gre	1.1	40	40	VBUS	N/	SYS	3.3V/5V power supply
GP1	2	GPI	USB,	VSYS	39	VSYS		010	sist/st power suppry
GND	3	GND	-	GND	38	GND	0	GND	Ground
	4			EN	37	3V3_EN			
GP3	5			343	36	3V3(OUT)	GP0	TXD 0	UART TX (default)
GP4	6	GP4			35	ADC_VREF		-	HART RY/L (10)
GP5	7	GPS			34		GP1	RXD 0	UART RX (default)
GND	8	GND		GND	33	GND	CDA	TYD 1	LIAPT TV (optional)
GPS	9				32	GP27	014	INDI	OART IX (optional)
GP7	10				31	GP26	GP5	RXD 1	UART RX (optional)
	11				30			Durine I	er an inter (op a onal)
	12				29	GP22	GP15	STATE	State detection
GND	13	GND		GND	28	GND			
GP10	14				27				
	15				26	GP20			
	16		VALA		25	GP19			
GP13	17		LU.		24	GP18			
GND	18	GNO	Waveshar	, CHIO	23	GND			
	19	CP14			22				
GP15	20	GPSS		A CONTRACT	21				

UC VUITUO U TETEVAL TEVE

Realizó	JMLM
Revisó	VJS
Fecha	22/03/2022

CONEXIÓN Y APLICACIÓN

1. Detección del celular con la Raspberry pi pico con modulo Bluetooth programado en Thonny para Windows

Conectamos la tarjeta mediante cabe microUSB e identificamos el nombre del puerto

FIed	😞 Reproducción automática	ico
	RPI-RP2 (F:)	
iQué va	Opciones de Uso general Abrir la carpeta para ver los archivos con Explorador de Windows Usar esta unidad para copias de seguridad con Copias de seguridad de Windows	var hoy?
	<u>Ver más opciones de Reproducción automática en el</u> Panel de control	

Realizó	JMLM
Revisó	VJS
Fecha	22/03/2022

Realizó	JMLM
Revisó	VJS
Fecha	22/03/2022

En monitor Serial con Bluettoth en nuestro celular Asi ya queda sincronizado nuestro celular con la Raspberry pi pico por medio del módulo Bluetooth

Cancelor

Sincronizar

AG Electrónica SAPI de CV República del Salvador Nº 20 2do Piso. Teléfono: 55 5130 - 7210 http://www.agelectronica.com

DISPOSITIVOS CONECTADOS PREVIAMENTE

ESP32_Jessi

Q

0

۲

Realizó	JMLM
Revisó	VJS
Fecha	22/03/2022

2. Encender LED de Raspberry Pi pico desde celular Ocupamos el siguiente código

🙀 Thonny - C:\Users\Soporte_Invitado\OneDrive\Documentos\prueba 1 BT.py @ 15:28 Fichero Editar Visualización Ejecutar Herramientas Ayuda prueba 1 BT.py 🗶 from machine import UART , Pin import time 2 4 #Power_On_Return_Message_OFF = b"AT+CR00\r\n" 5 #Power_On_Return_Message_ON = b"AT+CR001\r\n" 7 #Factory_Reset = b"AT+CW\r\n" 8 9 #Reset = $b^{H}AT+CZ\r\n^{H}$ 10 11 from machine import Pin, UART 12 uart = UART(0, 9600)14 Led_pin = 215 led = Pin(Led_pin, Pin.OUT) while True: if uart.any(): 18 19 data = uart.readline() 20 print(data) if data== '1': led.high() print("LED is now ON!") 24 elif data== '0': 25 led.low() print("LED is now OFF!") 27 #Baud_Rate_9600 = b"AT+CT01\r\n" 28 #Baud_Rate_19200 = b"AT+CT02\r\n" 29 #Baud_Rate_38400 = b"AT+CT03\r\n" 30 #Baud Rate 57600 = b"AT+CT04\r\n" 31 #Baud_Rate_115200 = b"AT+CT05\r\n" Consola 🗙 >>> %Run -c \$EDITOR CONTENT

Abrimos un monior serie en nuestro celular para esto descargamos Serial Bluetooth Serial.apk nos conectamos y configuramos los siguientes botones dandoles nombres de ONN Y OFF para que al presionarlos mandemos a apagar o encender el LED

¿Qué vamos a innovar hoy?

Realizó	JMLM
Revisó	VJS
Fecha	22/03/2022

Con el botón de ON, activamos un 1 que nos prenderá el LED y con el botón de OFF, un 0 para apagar el LED

ectro

¿Qué vamos a innovar hoy?

Realizó	JMLM
Revisó	VJS
Fecha	22/03/2022

*Recursos: Pico-BLE

AG Electrónica SAPI de CV República del Salvador N° 20 2do Piso. Teléfono: 55 5130 - 7210 http://www.agelectronica.com

Realizó	JMLM
Revisó	VJS
Fecha	22/03/2022

ISO

