STATIC RANDOM-ACCESS MEMORIES

- Fully Decoded RAMs Organized as 16 Words of Four Bits Each
- Schottky-Clamped for High Speed: Read Cycle Time . . . 25 ns Typical Write Cycle Time . . . 25 ns Typical
- Choice of Three-State or Open-Collector Outputs
- Compatible with Most TTL and I²L Circuits
- Chip-Select Input Simplifies External Decoding

SN54S189B, SN54S289B . . . J OR W PACKAGE SN74S189B, SN74S289B . . . J OR N PACKAGE (TOP VIEW)

description

These 64-bit active-element memories are monolithic Schottky-clamped transistor-transistor logic (TTL) arrays organized as 16 words of four bits each. They are fully decoded and feature a chip-select input to simplify decoding required to achieve expanded system organization. The memories feature p-n-p input transistors that reduce the low-level input current requirement to a maximum of -0.25 milliamperes, only one-eighth that of a Series 54S/74S standard load factor. The chip-select circuitry is implemented with minimal delay times to compensate for added system decoding.

write cycle

The information applied at the data input is written into the selected location when the chip-select input and the write-enable input are low. While the write-enable input is low, the 'S189B output is in the high-impedance state and the 'S289B output is off. When a number of outputs are bus-connected, this high-impedance or off state will neither load nor drive the bus line, but it will allow the bus line to be driven by another active output or a passive pull-up.

read cycle

The stored information (complement of information applied at the data input during the write cycle) is available at the output when the write-enable input is high and the chip-select input is low. When the chip-select input is high, the 'S189B output will be in the high-impedance state and the 'S289B output will be off.

FUNCTION TABLE

	INP	UTS	′S189B	'S289B		
FUNCTION	CHIP SELECT	WRITE ENABLE	OUTPUT	OUTPUT		
Write	L	L	High Impedance	Off		
Read	L	Н	Complement of Data Entered	Complement of Data Entered		
Inhibit	Н	X	High Impedance	Off		

 $H \equiv high level, L \equiv low level, X \equiv irrelevant$

logic symbols functional block diagram 'S189B A0 (1) **RAM 16 X 4** A0 (15) A1 (15) A1 64-BIT MEMORY 1-OF-16 DECODERS ADDRESS (14)MATRIX A2 ORGANIZED 16-X-4 A2 (14) (13) А3-(2) <u>s</u> – G1 A3 (13) (3) R/W. 1 EN [READ] 1 C2 [WRITE] (5) Q1 (4) $A \nabla$ D1-A. 2D (7) Q2 (6) CHIP SELECT (S) D2-(9) <u>O</u>3 WRITE AND SENSE (10) AMPLIFIER CONTROL D3-(11) Q4 READ/WRITE (R/W) (12) D4 -D1 (4) D2-(10) 'S289B RAM 16 X 4 D4 (12) (1) AO-(15) (9) A1-A2 (14) A 📆 Ō1 **0**2 $\overline{\mathbf{Q}}$ 3 $\overline{\mathbf{Q}}$ 4 (13) A3 (2) \bar{s} G1 (3) R/W -1 EN [READ] 1 C2 [WRITE] (5) (4) **A** ♀ - <u>ā</u>1 A, 2D D1 -(7) (6) - <u>Q</u>2 D2 (10) (9) Q3 D3 (11) (12) Q4 D4

schematics of inputs and outputs

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN54S'			SN74S'			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	OWII
Supply voltag	je, V _{CC}		4.5	5	5.5	4.75	5	5.25	٧
High-level output voltage, VOH 'S289B					5.5			5.5	٧
High-level out	tput current, IOH	'S189B			- 2			-6.5	mA
Low-level out	tput current, IOL				16			16	mA
Width of writ	Vidth of write pulse (write enable low), tw(wr)					25			ns
·	Address before write pulse, t _{su(da)}		O↓			0+			1
Setup time	Data before end of write pulse, te	25↑			25↑			ns	
	Chip-select before end of write pu	25↑	•		25↑				
	Address after write pulse, th(ad)		31			01			
Hold time	Data after write pulse, th(da)	01			01			ns	
	Chip-select after write pulse, th(S	01			01			1	
Operating fre	Operating free-air temperature, TA				125	0		70	°C

[†] The arrow indicates the transition of the write-enable input used for reference: † for the low-to-high transition, † for the high-to-low transition.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS†				'S189B		'S289B			1
	PARAMETER				MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.8			0.8	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Vικ	input clamp voltage	V _{CC} = MIN,	$I_{\parallel} = -18 \text{ m/s}$	A			- 1.2			-1.2	V
	High level output valtage	V _{CC} = MIN,	$V_{IH} = 2 V$	SN54S'	2.4	3.4					V
∨он	High-level output voltage	$V_{1L} = 0.8 V$	IOH = MAX	SN74S'	2.4	3.2					
	High-level output current	V _{CC} = MIN,	$V_{IH} = 2 V$	$V_0 = 2.4 \text{ V}$						40	μА
ІОН		V _{IL} = 0.8 V		V _O = 5.5 V						100] #^
``.	Low-level output voltage	V _{CC} = MIN,	$V_{IH} = 2 V$			0.35	0.5		0.35	0.5	V
VOL		$V_{IL} = 0.8 V$,	IOL = 16 m	A	0.35 0.5			0.55			L
	Off-state output current,	V _{CC} = MAX,	$V_{IH} = 2 V$		1		50				μА
lozh	high-level voltage applied	V _{IL} = 0.8 V,	$V_{OH} = 2.4$	V			50				
	Off-state output current,	V _{CC} = MAX,	$V_{IH} = 2 V$				- 50				μА
lozL	low-level voltage applied	$V_{IL} = 0.8 V,$	V _{OL} = 0.4 \	V							μ, τ
	Input current at maximum	VCC = MAX,	V: = 5.5.V				1			1	mA
11	input voltage	VCC - MAA,	V - 3.5 V								
ΊΗ	High-level input current	V _{CC} = MAX,	$V_1 = 2.7 \text{ V}$		İ		25			25	μА
I _I L	Low-level input current	V _{CC} = MAX,	$V_1 = 0.5 V$	-			- 250			- 250	μА
1	Short-circuit output	VCC = MAX			- 30		- 100				mA
los	current [§]	VCC - WAX						L			,
Icc	Supply current	V _{CC} = MAX,	See Note 2	-		75	110	İ	75	105	mA

NOTE 2: ICC is measured with the read/write and chip-select inputs grounded. All other inputs at 4.5 V, and the outputs open.

'S189B switching characteristics over recommended operating ranges of TA and VCC (unless otherwise noted)

				SI	N54S18	9B	SN74S189B			UNIT
	PARAMETER	TEST CONDITIONS	MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	UNIT	
ta(ad)	Access time from address	cess time from address			25	50		25	35	ns
ta(S)	Access time from chip select		$C_L = 30 pF$, See Note 3		18	25		18	22	ns
	(enable_time)			<u> </u>						1
t _{SR}	Sense recovery time	nse recovery time			22	40		22	35	ns
^t PXZ	Disable time from high	From S	C _L = 5 pF,		12	25		12	17	ns
	ar low level From W		See Note 3		12	30		12	25] '''

'S289B switching characteristics over recommended operating ranges of TA and VCC (unless otherwise noted)

			SN54S289B			SN74S289B			T	
	PARAMETER	TEST CONDITIONS	MIN	IN TYP‡	MAX	MIN	TYP [‡]	MAX	UNIT	
t _{a(ad)}	Access time from address	1			25	50	1	25	35	ns
t _a (S)	Access time from chip-sele (enable time)	ct	$C_L = 30 \text{ pF},$ $R_{L1} = 300 \Omega,$ $R_{L2} = 600 \Omega,$ See Note 3		18	25		18	22	ns
tSR	Sense recovery time				12			12	35	ns
	Propagation delay time,	From S							17	
^t PLH	output (disable time)			12	30		12	25	ns	

[†]For conditions shown as MIN or MAX use the appropriate value specified under recommended operating conditions.

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_A = 25 °.

[§]Duration of the short circuit should not exceed one second.