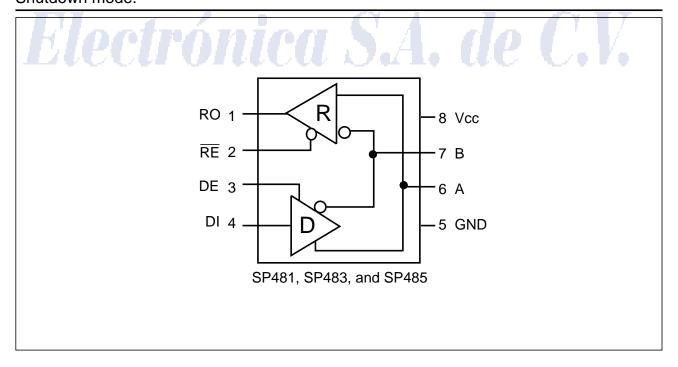

www.agelectronica.com www.agelectronica.com

SP481/SP483/SP485


Low Power Half-Duplex RS-485 Transceivers

- +5V Only
- Low Power BiCMOS
- Driver/Receiver Enable
- Slew Rate Limited Driver for Low EMI (SP483)
- Low Power Shutdown Mode (SP481 and SP483)
- RS-485 and RS-422 Drivers/Receivers

DESCRIPTION

The **SP481**, **SP483**, and the **SP485** are a family of half-duplex transceivers that meet the requirements of RS-485 and RS-422. Their BiCMOS design allows low power operation without sacrificing performance. The **SP481** and **SP485** meet the requirements of RS-485 and RS-422 up to 5Mbps. Additionally, the **SP481** is equipped with a low power Shutdown mode. The **SP483** is internally slew rate limited to reduce EMI and can meet the requirements of RS-485 and RS-422 up to 250kbps. The **SP483** is also equipped with a low power Shutdown mode.

ABSOLUTE MAXIMUM RATINGS

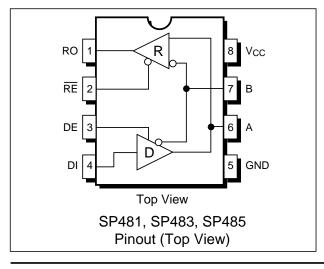
These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

V _{CC}	±12V
Input Voltages	
Logic	0.3V to (V _{cc} +0.5V)
Drivers	0.3V to (V _{cc} +0.5V)
Receivers	±15V
Output Voltages	
Logic	0.3V to (V _{cc} +0.5V)
Drivers	±15V
Receivers	0.3V to (V _{cc} +0.5V)
Storage Temperature	65°C to +150°C
	500mW

SPECIFICATIONS

 $\rm T_{MIN}$ to $\rm T_{MAX}$ and $\rm V_{CC}$ = 5V ± 5% unless otherwise noted.

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP481/SP483/SP485 DRIVER					
DC Characteristics					
Differential Output Voltage	GND		V _{cc}	Volts	Unloaded; $R = \infty$; see figure 1
Differential Output Voltage	2		V _{cc}	Volts	with load; $R = 50\Omega$; (RS422);
D''' 11 O 1 11 W					see figure 1
Differential Output Voltage	1.5		V _{cc}	Volts	with load; $R = 27\Omega$; (RS485); see figure 1
Change in Magnitude of Driver Differential Output Voltage for				4	
Complimentary States			0.2	Volts	$R = 27\Omega$ or $R = 50\Omega$; see figure 1
Driver Common-Mode			0.2	Volto	IX = 27 as of IX = ooss, see figure 7
Output Voltage			3	Volts	$R = 27\Omega$ or $R = 50\Omega$; see figure 1
Input High Voltage	2.0			Volts	Applies to DE, DI, RE
Input Low Voltage			0.8	Volts	Applies to DE, DI, RE
Input Current			±10	μΑ	Applies to DE, DI, RE
Driver Short-Circuit Current					
V _{OUT} = HIGH	35		250	mA	$-7V \le V_O \le +12V$
$V_{OUT} = LOW$	35		250	mA	-7V ≤ V _O ≤ +12V
SP481/SP485 DRIVER				1	
AC Characteristics					
Maximum Data Rate	5			Mbps	RE = 5V, DE = 5V
Driver Input to Output	20	30	60	ns	t_{PLH} ; $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100pF$;
Stall libraria consult	20	20	00	Y 4	see figures 3 and 6
Driver Input to Output	20	30	60	ns	t_{PHL} ; $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100pF$; see figures 3 and 6
Driver Skew		5	10	ns	see figures 3 and 6,
Bilver chew		9 0	18_	113	t _{SKEW} = t _{DPLH} - t _{DPHL}
Driver Rise or Fall Time	3	15	40	ns	From 10% to 90%; $R_{DIFF} = 54\Omega$,
					$C_{L1} = C_{L2} = 100 \text{pF}$; see figures 3 and 6
Driver Enable to Output High		40	70	ns	C _L = 100pF; see figures 4 & 7; S ₂ closed
Driver Enable to Output Low		40	70	ns	C _L = 100pF; see figures 4 & 7; S ₁ closed
Driver Disable Time from Low		40	70	ns	C _L = 15pF; see figures 2 & 9; S ₁ closed
Driver Disable Time from High		40	70	ns	C _L = 15pF; see figures 2 & 9; S ₂ closed
SP481/SP483/SP485 RECEIVE	R				
DC Characteristics	•				
Differential Input Threshold	-0.2		+0.2	Volts	-7V ≤ V _{CM} ≤ +12V
Input Hysteresis		10		mV	$V_{CM} = 0V$
Output Voltage High	3.5			Volts	$I_0 = -4 \text{mA}, V_{10} = +200 \text{mV}$
Output Voltage Low			0.4	Volts	$I_{O}^{\circ} = +4 \text{mA}, \ V_{ID} = -200 \text{mV}$
Three-State (High Impedance)			_		
Output Current	40	4.5	±1	μΑ	$0.4V \le V_O \le 2.4V$; $\overline{RE} = 5V$
Input Resistance	12	15		kΩ	$-7V \le V_{CM} \le +12V$
Input Current (A, B); V _{IN} = 12V			+1.0 -0.8	mA mA	DE = $0V$, $V_{CC} = 0V$ or 5.25V, $V_{IN} = 12V$
Input Current (A, B); $V_{IN} = -7V$ Short-Circuit Current	7		95	mA	DE = 0V, V _{CC} = 0V or 5.25V, V _{IN} = -7V
Short Shoult Sufferit	'		30	111/	$0V \le V_{CM} \le V_{CC}$


SPECIFICATIONS (continued)

T_{MIN} to T_{MAX} and V_{CC} = 5V ± 5% unless otherw	rise noted.				
PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP481/SP485 RECEIVER					
AC Characteristics					
Maximum Data Rate	5			Mbps	$\overline{RE} = 0V$, $DE = 0V$
Receiver Input to Output	60	90	200	ns	t_{PLH} , $R_{DIFF} = 54\Omega$,
·					$C_{L1}^{L1} = C_{L2}^{L2} = 100 \text{pF}$; Figures 3 & 8
Receiver Input to Output	60	90	200	ns	t_{DLI} ; $R_{\text{DIEE}} = 54\Omega$,
·					$t_{PHL}; R_{DIFF} = 54\Omega,$ $C_{L1} = C_{L2} = 100pF; Figures 3 & 8$
Diff. Receiver Skew It _{PLH} -t _{PHI} I		13		ns	$R_{DIFF}^{LT} = 54\Omega; C_{L1} = C_{L2} = 100pF;$
FUI FIIL					Figures 3 & 8
Receiver Enable to					
Output Low	//	20	50	ns	C _{RI} = 15pF; <i>Figures 2 & 9;</i> S ₁ closed
Receiver Enable to	//				IXE
Output High	/	20	50	ns	C _{RI} = 15pF; <i>Figures 2 & 9;</i> S ₂ closed
Receiver Disable from Low		20	50	ns	$C_{RI} = 15pF$; Figures 2 & 9; S_1 closed
Receiver Disable from High		20	50	ns	C _{RI} = 15pF; <i>Figures 2 & 9;</i> S ₂ closed
					INE , Z
SP481					
0. 401					
Shutdown Timing					
Time to Shutdown	50	200	600	nc	RE = 5V, DE = 0V
Driver Enable from Shutdown	50	200	000	ns	RE = 5V, $DE = 0V$
to Output High		40	100	ne	C ₁ = 100pF; See figures 4 & 7; S ₂ closed
Driver Enable from Shutdown		40	100	ns	$C_L = 100 \text{pr}$, See ligules 4 & 7, S_2 closed
		40	100	no	C - 100nE: See figures 4 9 7: S. closed
to Output Low		40	100	ns	C _L = 100pF; See figures 4 & 7; S ₁ closed
Receiver Enable from		200	1000	no	C - 15pE: Coo figures 2 % 0: S. alasad
Shutdown to Output High		300	1000	ns	C _L = 15pF; <i>See figures 2 & 9;</i> S ₂ closed
Receiver Enable from		200	1000	no	C ₁ = 15pF; See figures 2 & 9; S ₁ closed
Shutdown to Output Low		300	1000	ns	$C_L = 15 pr$, See ligures 2 & 9, S_1 closed
DOWER REQUIREMENTS					
POWER REQUIREMENTS					
Supply Voltage	+4.75		+5.25	Volts	
Supply Current					
SP481/485					
No Load		900		μΑ	\overline{RE} , DI = 0V or V_{CC} ; DE = V_{CC} RE = 0V, DI = 0V or 5V; DE = 0V
				μΑ	RE = 0V, $DI = 0V$ or $5V$; $DE = 0V$
SP483		000			
No Load		600		μΑ	\overrightarrow{RE} , DI = 0V or \overrightarrow{V}_{CC} ; DE = \overrightarrow{V}_{CC}
I DO LO LO COMO DI LO	4 J.A			μΑ	\overrightarrow{RE} =0V, DI = 0V or 5V; DE = 0V
SP481/SP483	- + 4		Y 5-7	AT W	
Shutdown Mode			10	μΑ	$DE = 0V, \overline{RE} = V_{CC}$
ENVIRONMENTAL AND					
MECHANICAL					
Operating Temperature					
Commercial (_C_)	0		+70	°C	
Industrial (_E_)	-40		+85	°C	
Storage Temperature	-65		+150	°C	
Package					
Plastic DIP (_S)					
NSOIC (_N)					
			l	1	

SP483 AC SPECIFICATIONS

 $\rm T_{MIN}$ to $\rm T_{MAX}$ and $\rm V_{CC}$ = 5V ± 5% unless otherwise noted.

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP483 DRIVER					
AC Characteristics					
Maximum Data Rate	250			kbps	
Driver Input to Output	250	800	2000	ns	$t_{PLH}; R_{DIFF} = 54\Omega, C_{L1} = C_{L2} = 100pF;$
Daire Charre	050	000	0000		see figures 3 & 6
Driver Skew	250	800	2000	ns	t_{PHL} ; $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2}^{=} 100 pF$; see figures 3 & 6
Driver Rise and Fall Time		100	800	ns	see figures 3 & 6,
		/			
	250		2000	ns	$t_{SKEW} = t_{DPLH} - t_{DPHL} $ From 10% to 90%; $R_{DIFF} = 54\Omega$,
Driver Enable to Output High	250		2000	ne	$C_{L1} = C_{L2} = 100 \text{pF}$, see figures 3 & 6 $C_{L} = 100 \text{pF}$; See figures 4 & 7; S_2 closed
Driver Enable to Output Fight Driver Enable to Output Low	250		2000	ns ns	$C_L = 100 \text{pF}$, See ligures 4 & 7, S_2 closed $C_L = 100 \text{pF}$; See figures 4 & 7; S_1 closed
Driver Disable Time from Low	300	/	3000	ns	$C_1 = 15pF$; See figures 4 & 7; S_1 closed
Driver Disable Time from High	300		3000	ns	$C_L^L = 15pF$; See figures 4 & 7; S_2^L closed
SP483 RECEIVER					
AC Characteristics					
Maximum Data Rate	250		0000	kbps	. D
Receiver Input to Output	250		2000	ns	t_{PLH} ; $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100pF$;
Diff. Receiver Skew It _{PLH} -t _{PHI} I		100		ns	$R_{DIFF} = 54\Omega, C_{L1} = C_{L2} = 100pF;$
PLH PHL					Figures 3 & 8
Receiver Enable to				//	
Output Low		20	50	ns	C _{RL} = 15pF; <i>Figures 2 & 9;</i> S ₁ closed
Receiver Enable to Output High		20	50	ns	C _{RI} = 15pF; Figures 2 & 9; S ₂ closed
Receiver Disable from Low		20	50	ns	$C_{Pl} = 15pF$; Figures 2 & 9; S_1 closed
Receiver Disable from High		20	50	ns	C _{RL} = 15pF; Figures 2 & 9; S ₂ closed
SP483					
Shutdown Timing					
Time to Shutdown	50	200	600	ns	RE = 5V, DE = 0V
Driver Enable from Shutdown to Output High	_		2000	ns .	C ₁ = 100pF; <i>See figures 4 & 7;</i> S ₂ closed
Driver Enable from Shutdown			2000	113	OL - 100pt, Occ ligules 4 & 1, 32 diosed
to Output Low	h F 7	1404	2000	ns	C _L = 100pF; See figures 4 & 7; S ₁ closed
Receiver Enable from	7 5 ()	rt t	4.	7 0/ 1	
Shutdown to Output High Receiver Enable from	_		2500	ns	C _L = 15pF; See figures 4 & 7; S ₂ closed
Shutdown to Output Low			2500	ns	C ₁ = 15pF; See figures 4 & 7; S ₁ closed
2. diam. to Sulput Lott					- L . 10p. , 200garoo / a /, 01 0.0000

PIN FUNCTION

	••.	
Pin#	Name	Description
1	RO	Receiver Output.
2	$\overline{\text{RE}}$	Receiver Output Enable
		Active LOW.
3	DE	Driver Output Enable
		Active HIGH.
4	DI	Driver Input.
5	GND	Ground Connection.
6	A	Driver Output/Receiver Input
		Non-inverting.
7	В	Driver Output/Receiver Input
		Inverting.
8	Vcc	Positive Supply 4.75V <vcc< 5.25v.<="" td=""></vcc<>
		:

DESCRIPTION SP481, SP483, SP485

The **SP481**, **SP483**, and **SP485** are half-duplex differential transceivers that meet the requirements of RS-485 and RS-422. Fabricated with a Sipex proprietary BiCMOS process, all three products require a fraction of the power of older bipolar designs.

The RS-485 standard is ideal for multi-drop applications and for long-distance interfaces. RS-485 allows up to 32 drivers and 32 receivers to be connected to a data bus, making it an ideal choice for multi-drop applications. Since the cabling can be as long as 4,000 feet, RS-485 transceivers are equipped with a wide (-7V to +12V) common mode range to accommodate ground potential differences. Because RS-485 is a differential interface, data is virtually immune to noise in the transmission line.

Drivers SP481, SP483, SP485

The driver outputs of the **SP481**, **SP483**, and **SP485** are differential outputs meeting the RS-485 and RS-422 standards. The typical voltage output swing with no load will be 0 volts to +5 volts. With worst case loading of 54Ω across the differential outputs, the drivers can maintain greater than 1.5V voltage levels. The drivers of the **SP481**, **SP483** and **SP485** have an enable control line which is active HIGH. A logic HIGH on DE (pin 5) will enable the differential driver outputs. A logic LOW on DE (pin 5) will tri-state the driver outputs.

The transmitters of the **SP481** and **SP485** will operate up to at least 5Mbps. The **SP483** has internally slew rate limited driver outputs to minimize EMI. The maximum data rate for the **SP483** driver is 250kbps.

Receivers SP481, SP483, SP485

The **SP481**, **SP483**, and **SP485** receivers have differential inputs with an input sensitivity as low as $\pm 200 \text{mV}$. Input impedance of the receivers is typically $15 \text{k}\Omega$ ($12 \text{k}\Omega$ minimum). A wide common mode range of -7V to +12V allows for large ground potential differences between systems. The receivers of the **SP481**, **SP483** and **SP485** have a tri-state enable control pin. A logic LOW on $\overline{\text{RE}}$ (pin 4) will enable the receiver, a logic HIGH on $\overline{\text{RE}}$ (pin 4) will disable the receiver.

The receiver for the **SP481** and **SP485** will operate up to at least 5Mbps. The **SP483** receiver is rated for data rates up to 250kbps. The receiver for each of the three devices is equipped with the fail-safe feature. Fail-safe guarantees that the receiver output will be in a HIGH state when the input is left unconnected.

Shutdown Mode SP481/SP483

The **SP481** and **SP483** are equipped with a Shutdown mode. To enable the Shutdown state, both the driver and receiver must be disabled simultaneously. A logic LOW on DE (pin 5) and a logic HIGH on \overline{RE} (pin 4) will put the **SP481** or **SP483** into Shutdown mode. In Shutdown, supply current will drop to typically $1\mu A$.

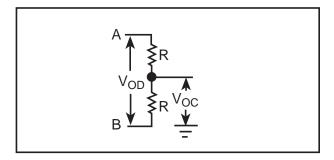


Figure 1. Driver DC Test Load Circuit

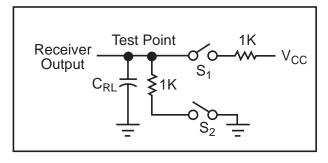


Figure 2. Receiver Timing Test Load Circuit

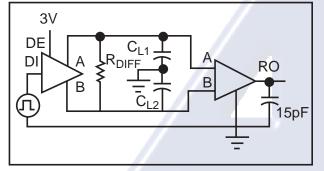


Figure 3. Driver/Receiver Timing Test Circuit

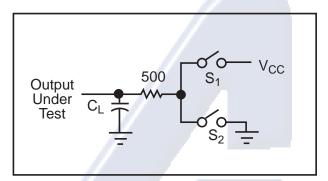


Figure 4. Driver Timing Test Load #2 Circuit

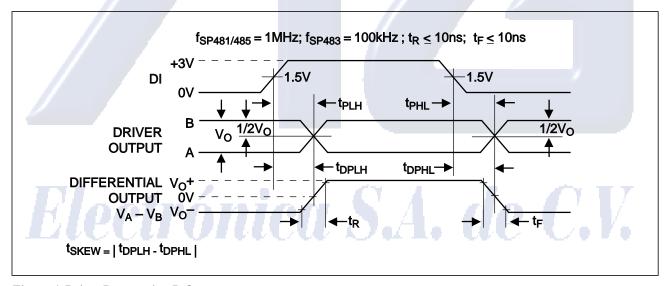


Figure 6. Driver Propagation Delays

I	NPUT	S		OUTI	PUTS
RE	DE	DI	LINE CONDITION	В	A
X	1	1	No Fault	0	1
X	1	0	No Fault	1	0
X	0	X	X	Z	Z
X	1	X	Fault	Z	Z

Table 1. Transmit Function Truth Table

INP	UTS		OUTPUTS
RE	DE	A - B	R
0	0	+0.2V	1
0	0	-0.2V	0
0	0	Inputs Open	1
1	0	X	Z

Table 2. Receive Function Truth Table

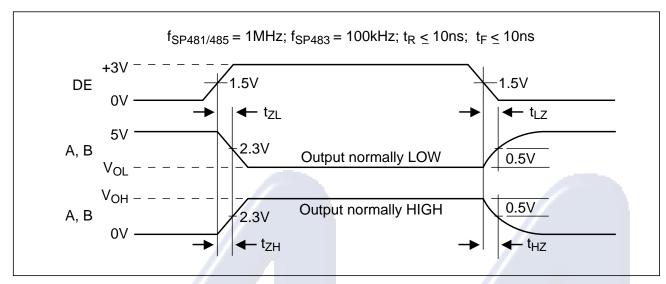


Figure 7. Driver Enable and Disable Times

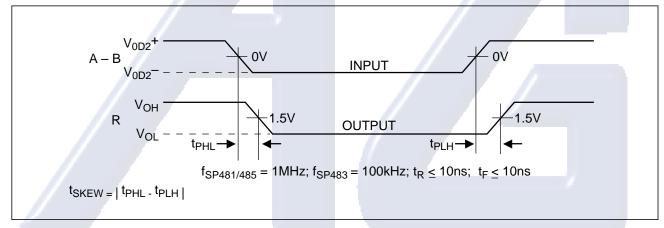


Figure 8. Receiver Propagation Delays

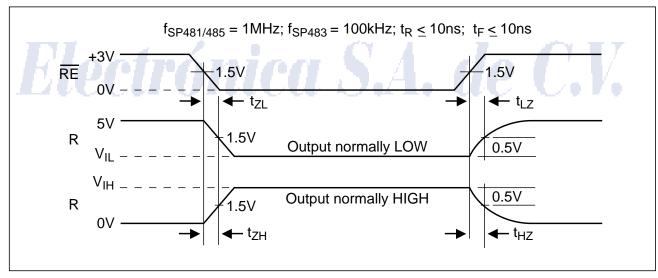
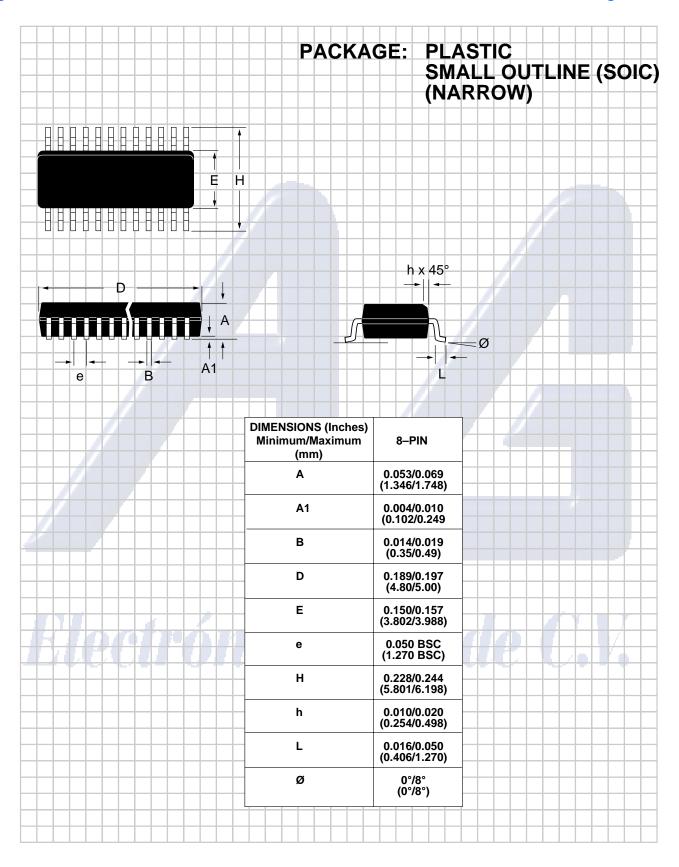
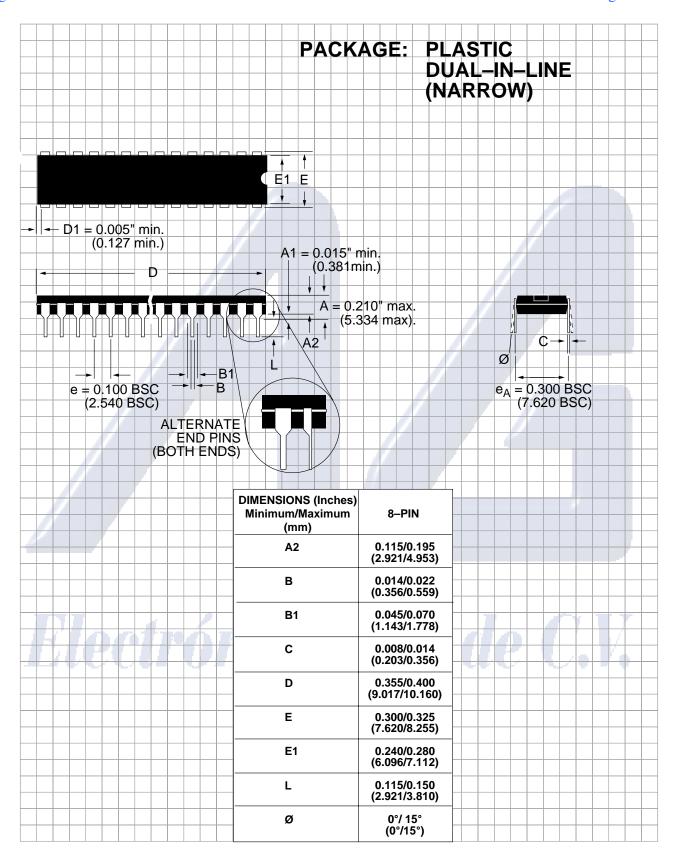




Figure 9. Receiver Enable and Disable Times

ORDERING INFORMATION

Model	Temperature Range	Package
SP481CN	0°C to +70°C	8-pin Narrow SOIC
SP481CS	0°C to +70°C	8-pin Plastic DIP
SP481EN	40°C to +85°C	8-pin Narrow SOIC
SP481ES	40°C to +85°C	8-pin Plastic DIP
SP483CN	0°C to +70°C	8-pin Narrow SOIC
	0°C to +70°C	
SP483EN	40°C to +85°C	8-pin Narrow SOIC
SP483ES	40°C to +85°C	8-pin Plastic DIP
SP485CS	0°C to +70°C	8-pin Plastic DIP
SP485EN	40°C to +85°C	8-pin Narrow SOIC
SP485ES	-40°C to +85°C	8-pin Plastic DIP

Please consult the factory for pricing and availability on a Tape-On-Reel option.

SIGNAL PROCESSING EXCELLENCE

Sipex Corporation

Headquarters and Sales Office 22 Linnell Circle

Billerica, MA 01821 TEL: (978) 667-8700 FAX: (978) 670-9001 e-mail: sales@sipex.com

Sales Office

233 South Hillview Drive Milpitas, CA 95035 TEL: (408) 934-7500 FAX: (408) 935-7600

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.

etrónica S.A. de C.V.

Rev. 07/16/02