

STB24N60DM2, STP24N60DM2, STW24N60DM2

N-channel 600 V, 0.175 Ω typ., 18 A FDmesh II Plus™ low Q_g Power MOSFETs in D²PAK, TO-220 and TO-247 packages

Datasheet - production data

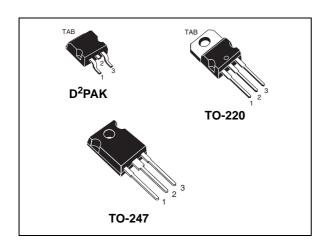
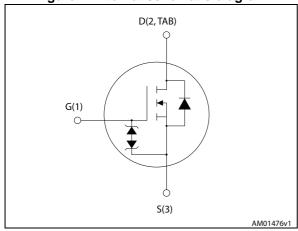



Figure 1. Internal schematic diagram

Features

Order codes	V _{DS} @ T _{Jmax}	R _{DS(on)} max	I _D
STB24N60DM2			
STP24N60DM2	650 V	$0.20~\Omega$	18 A
STW24N60DM2			

- Extremely low gate charge and input capacitance
- Lower R_{DS(on)} x area vs previous generation
- Low gate input resistance
- 100% avalanche tested
- Zener-protected
- Extremely high dv/dt and avalanche capabilities

Applications

Switching applications

Description

These FDmesh II Plus $^{\text{TM}}$ low Q_g Power MOSFETs with intrinsic fast-recovery body diode are produced using a new generation of MDmesh $^{\text{TM}}$ technology: MDmesh II Plus $^{\text{TM}}$ low Q_g . These revolutionary Power MOSFETs associate a vertical structure to the company's strip layout to yield one of the world's lowest on-resistance and gate charge. They are therefore suitable for the most demanding high efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

Table 1. Device summary

Order codes	Marking	Package	Packaging
STB24N60DM2		D ² PAK	Tape and reel
STP24N60DM2	24N60DM2	TO-220	Tube
STW24N60DM2		TO-247	Tube

March 2014 DocID025499 Rev 3 1/21

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	9
4	Package mechanical data	0
5	Packaging mechanical data1	8
6	Revision history	20

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	± 25	V
I _D	Drain current (continuous) at T _C = 25 °C	18	Α
I _D	Drain current (continuous) at T _C = 100 °C	11	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	72	Α
P _{TOT}	Total dissipation at T _C = 25 °C	150	W
dv/dt (2)	Peak diode recovery voltage slope	40	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
T _j	Max. operating junction temperature	- 33 10 130)

- 1. Pulse width limited by safe operating area.
- 2. $I_{SD} \leq$ 18 A, di/dt \leq 400 A/ μ s; $V_{DS\ peak}$ < $V_{(BR)DSS}$, V_{DD} =400 V.
- 3. $V_{DS} \le 480 \text{ V}$

Table 3. Thermal data

Symbol Parameter			Unit		
		D ² PAK	TO-220	TO-247	Onit
R _{thj-case}	Thermal resistance junction-case max	0.83		°C/W	
R _{thj-pcb}	Thermal resistance junction-pcb max ⁽¹⁾	30			°C/W
R _{thj-amb}	Thermal resistance junction-ambient max		62.5	50	°C/W

^{1.} When mounted on 1 inch² FR-4, 2 Oz copper board

Table 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T_{jmax})	3.5	Α
E _{AS}	Single pulse avalanche energy (starting T_j =25°C, I_D = I_{AR} ; V_{DD} =50)	180	mJ

Downloaded from Arrow.com.

2 **Electrical characteristics**

(T_C = 25 °C unless otherwise specified)

Table 5. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	600			V
1	Zero gate voltage	V _{DS} = 600 V			1.5	μΑ
DSS	I_{DSS} drain current ($V_{GS} = 0$)	V _{DS} = 600 V, T _C =125 °C			100	μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 25 V			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 9 A		0.175	0.200	Ω

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	1055	-	pF
C _{oss}	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	56	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0$	-	2.4	-	pF
C _{oss eq.} ⁽¹⁾	Equivalent output capacitance	V _{DS} = 0 to 480 V, V _{GS} = 0	-	259	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0	-	7	-	Ω
Qg	Total gate charge	V _{DD} = 480 V, I _D = 18 A,	-	29	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V	-	6	-	nC
Q_{gd}	Gate-drain charge	(see Figure 17)	-	12	-	nC

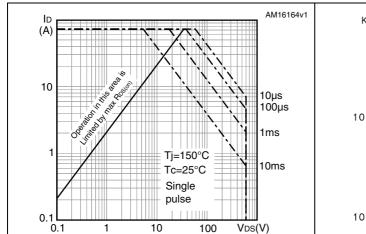
^{1.} $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 7. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	15	-	ns
t _r	Rise time	$V_{DD} = 300 \text{ V}, I_{D} = 9 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$	-	8.7	-	ns
t _{d(off)}	Turn-off delay time	(see <i>Figure 16</i> and <i>21</i>)	-	60	-	ns
t _f	Fall time	,	-	15	-	ns

DocID025499 Rev 3 4/21

Table 8. Source drain diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		18	Α
I _{SDM} ⁽²⁾	Source-drain current (pulsed)		-		72	Α
V _{SD} ⁽³⁾	Forward on voltage	I _{SD} = 18 A, V _{GS} = 0	-		1.6	٧
t _{rr}	Reverse recovery time	10.4.11/11/11/11/11	-	155		ns
Q _{rr}	Reverse recovery charge	$I_{SD} = 18 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 60 \text{ V (see Figure 18)}$	-	956		nC
I _{RRM}	Reverse recovery current	Top = se t (see rigare re)	-	12.5		Α
t _{rr}	Reverse recovery time	I _{SD} = 18 A, di/dt = 100 A/μs	-	200		ns
Q _{rr}	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 ^{\circ}\text{C}$	-	1450		nC
I _{RRM}	Reverse recovery current	(see <i>Figure 18</i>)	-	13		Α

- 1. Limited by maximum junction temperature
- 2. Pulse width limited by safe operating area.
- 3. Pulsed: pulse duration = $300 \mu s$, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for D²PAK, TO-220 Figure 3. Thermal impedance D²PAK, TO-220

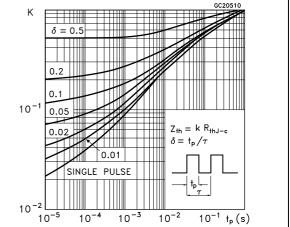
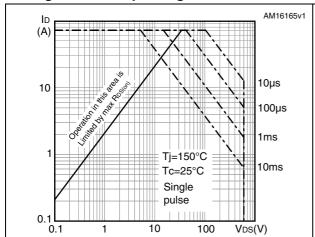



Figure 4. Safe operating area for TO-247

Figure 5. Thermal impedance for TO-247

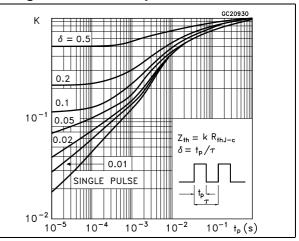
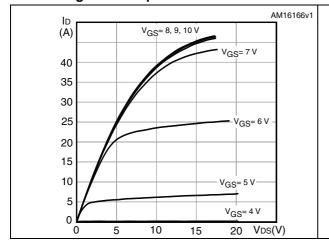
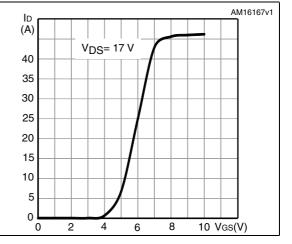
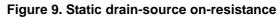
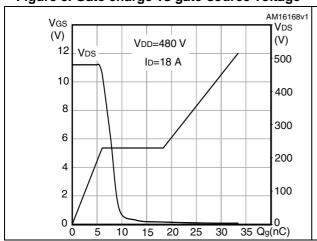




Figure 6. Output characteristics


Figure 7. Transfer characteristics



 $\overline{\mathbf{M}}$

Figure 8. Gate charge vs gate-source voltage

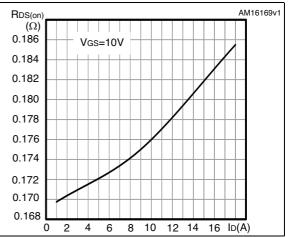
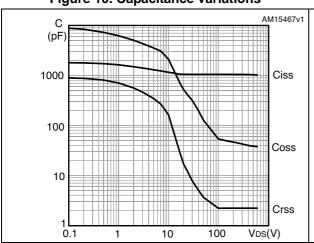



Figure 10. Capacitance variations

Figure 11. Output capacitance stored energy

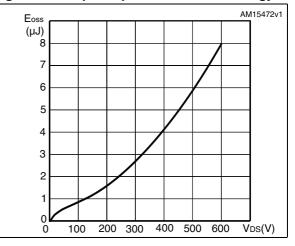
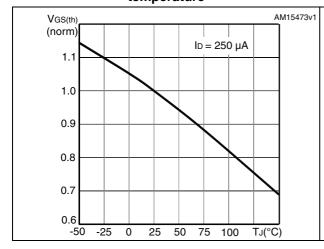
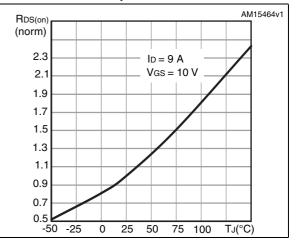
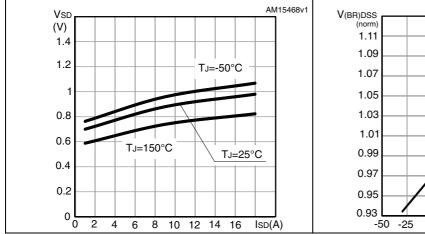
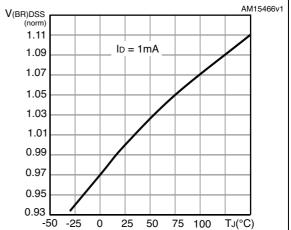




Figure 12. Normalized gate threshold voltage vs temperature

Figure 13. Normalized on-resistance vs temperature





57/

Figure 14. Source-drain diode forward characteristics

Figure 15. Normalized $V_{(BR)DSS}$ vs temperature

577

3 Test circuits

Figure 16. Switching times test circuit for resistive load

Figure 17. Gate charge test circuit

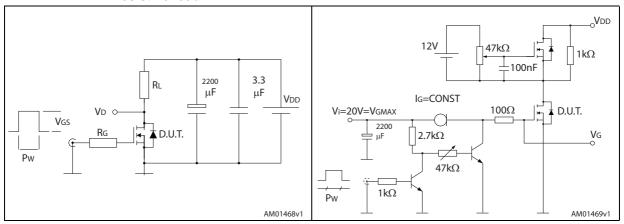


Figure 18. Test circuit for inductive load switching and diode recovery times

Figure 19. Unclamped inductive load test circuit

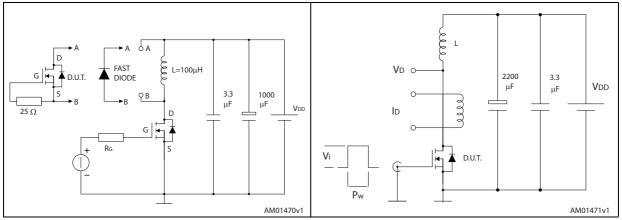
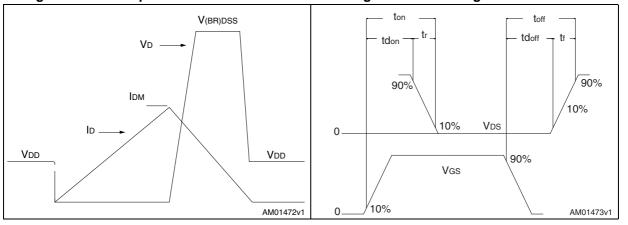



Figure 20. Unclamped inductive waveform

Figure 21. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

57/

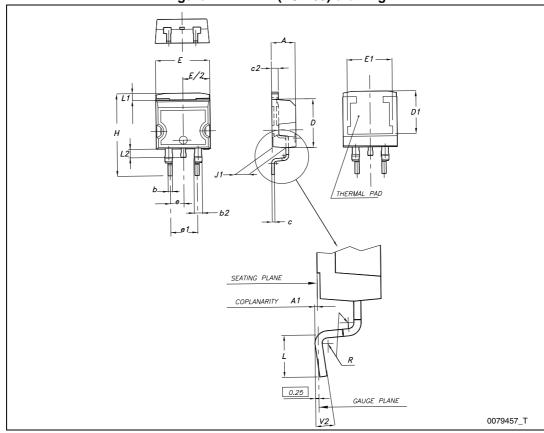


Figure 22. D²PAK (TO-263) drawing

Table 9. D²PAK (TO-263) mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50		
Е	10		10.40
E1	8.50		
е		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

47/

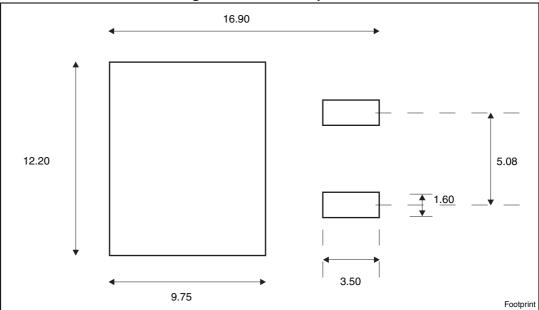


Figure 23. D²PAK footprint^(a)

a. All dimension are in millimeters

øΡ H1 D <u>D1</u> L20 L30 b1(X3) b (X3) 0015988_typeA_Rev_T

Figure 24. TO-220 type A drawing

577

Table 10. TO-220 type A mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

HEAT-SINK PLANE

BACK VIEW 0075325, G

Figure 25. TO-247 drawing

Table 11. TO-247 mechanical data

	100.0				
Dim.	mm.				
	Min.	Тур.	Max.		
Α	4.85		5.15		
A1	2.20		2.60		
b	1.0		1.40		
b1	2.0		2.40		
b2	3.0		3.40		
С	0.40		0.80		
D	19.85		20.15		
E	15.45		15.75		
е	5.30	5.45	5.60		
L	14.20		14.80		
L1	3.70		4.30		
L2		18.50			
ØP	3.55		3.65		
ØR	4.50		5.50		
S	5.30	5.50	5.70		

5 Packaging mechanical data

10 pitches cumulative tolerance on tape +/- 0.2 mm

Top cover properties of the prop

Figure 26. Tape

Downloaded from Arrow.com.

REEL DIMENSIONS

40mm min.

Access hole

At sl ot location

Full radius

Tape slot in core for tape start 25 mm min. width

AM08851v2

Figure 27. Reel

Table 12. D2PAK (TO-263) tape and reel mechanical data

Таре				Reel		
Dim.	r	nm	Dim.	mm		
	Min.	Max.		Min.	Max.	
A0	10.5	10.7	Α		330	
В0	15.7	15.9	В	1.5		
D	1.5	1.6	С	12.8	13.2	
D1	1.59	1.61	D	20.2		
Е	1.65	1.85	G	24.4	26.4	
F	11.4	11.6	N	100		
K0	4.8	5.0	Т		30.4	
P0	3.9	4.1				
P1	11.9	12.1		Base qty	1000	
P2	1.9	2.1		Bulk qty	1000	
R	50					
Т	0.25	0.35				
W	23.7	24.3				

6 Revision history

Table 13. Document revision history

Date	Revision	Changes	
12-Nov-2013	1	First release.	
17-Jan-2014	2	 Document status promoted from preliminary data to production data Modified: dv/dt (peak diode recovery voltage slope) value in <i>Table 2</i> Modified: I_{AR} value in <i>Table 4</i> Modified: I_{DSS} and V_{GS(th)} values in <i>Table 5</i> Minor text changes 	
03-Mar-2014	3	- Modified: I _{AR} value in <i>Table 4</i> - Added: note 1.: Limited by maximum junction temperature - Minor text changes	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID025499 Rev 3

21/21