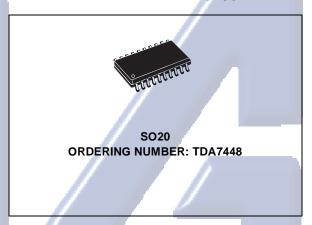
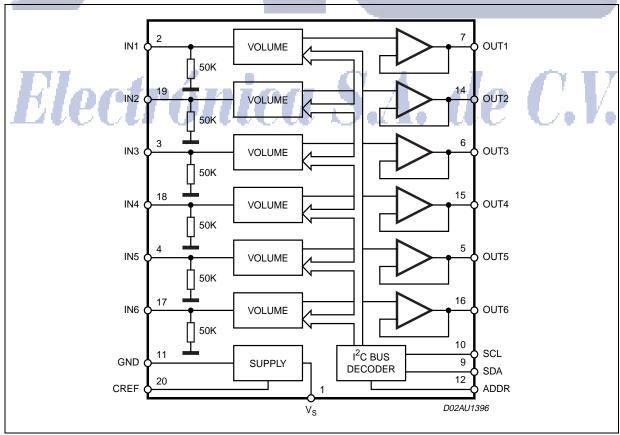


6 CHANNEL VOLUME CONTROLLER


PRODUCT PREVIEW

- 6 CHANNEL INPUTS
- 6 CHANNEL OUTPUTS
- VOLUME ATTENUATION RANGE OF 0 TO -79dB
- VOLUME CONTROL IN 1.0dB STEPS
- 6 CHANNEL INDEPENDENT CONTROL
- ALL FUNCTION ARE PROGRAMMABLE VIA SERIAL BUS

DESCRIPTIO


The TDA7448 is a 6 channel volume controller for quality audio applications in Multi-Channels Audio Systems

Thanks to the used BIPOLAR/CMOS Technology,

Low Distortion, Low Noise and DC stepping are obtained.

BLOCK DIAGRAM

December 2002 1/13

This is preliminary information on a new product now in development. Details are subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter Value		Unit
Vs	Operating Supply Voltage	10.5	V
T _{amb}	Operating Ambient Temperature	-10 to 85	°C
T _{stg}	Storage Temperature Range	-55 to 150	°C

PIN CONNECTION 20 CREF IN1 \square 19 IN2 IN3 \square 18 IN4 IN5 \square 17 IN6 OUT5 \square 16 D OUT6 OUT3 \square 15 **OUT**4 OUT1 \square 14 D OUT2 N.C. 13 Ⅲ N.C. SDA \square 12 D ADDR SCL \square 11 ☐ GND

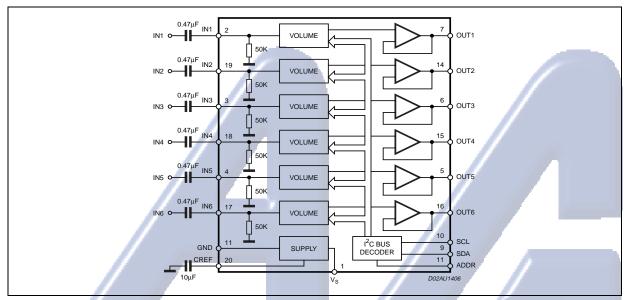
THERMAL DATA

Symbol	Parameter	CA	Value	Unit
R _{th j-pin}	thermal Resistance junction-pins	$\mathbf{J}.A$	150	°C/W

D02AU1397

QUICK REFERENCE DATA

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vs	Supply Voltage	4.75	9	10	V
V _{CL}	Max Input Signal Handling 2			Vrms	
THD	Total Harmonic Distortion V = 1Vrms f =1KHz		0.01	0.1	%
S/N	Signal to Noise Ratio Vout = 1Vrms		100		dB
S _C	Channel Separation f = 1KHz		90		dB
	Volume Control (1dB step)	-79		0	dB
	Mute Attenuation		90		dB


2/13

ELECTRICAL CHARACTERISTCS (refer to the test circuit T_{amb} = 25°C, V_S = 9V, R_L = 10K Ω , R_G = 600 Ω , unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
SUPPLY						
Vs	Supply Voltage		4.75	9	10	V
Is	Supply Current			7		mA
SVR	Ripple Rejection			80		dB
INPUT S	TAGE	7				
R _{IN}	Input Resistance		35	50	65	ΚΩ
V_{CL}	Clipping Level	THD = 0.3%	2	2.5		Vrms
S _{IN}	Input Separation	The selected input is grounded through a 2.2µ capacitor		90		dB
VOLUME	CONTROL			7		
C _{RANGE}	Control Range			79		dB
A _{VMAX}	Max. Attenuation			79		dB
A _{STEP}	Step Resolution		0.5	1	1.5	dB
EA	Attenuation Set Error	A _V = 0 to -24dB	-1	0	1	dB
		A _V = -24 to -79dB	-2.0	0	2.0	dB
E _T /	Tracking Error	$A_V = 0$ to -24dB	-1	0	1	dB
		A _V = -24 to -79dB	-2	0	2	dB
V _{DC}	DC Step	adyacent attenuation steps	-3	0	3	mV
A _{mute}	Mute Attenuation			90		db
AUDIO C	DUTPUTS				-	
V _{CLIP}	Clipping Level	THD = 0.3%	2	2.5	A Y	Vrms
RL	Output Load Resistance	II:II. 3.A.	2	P.	7.	ΚΩ
V _{DC}	DC Voltage Level			4.5		V
GENER A	\L	1	I			
E _{NO}	Output Noise	BW = 20Hz to 20KHz All gains = 0dB, Flat		10	15	μV
S/N	Signal to Noise Ratio	All gains = 0dB; V _O = 1Vrms		100		dB
S _C	Channel Separation left/Right		80	90		dB
THD	Distortion	$A_V = 0$; $V_I = 1Vrms$		0.01	0.1	%
BUS INP	UT	•				
VII	Input Low Voltage				1	V
V _{IH}	Input High Voltage		2.5			V
I _{IN}	Input Current	V _{IN} = 0.4V	-5		5	μΑ
Vo	Output Voltage SDA Achnowledge	I _O = 1.6mA		0.4	0.8	V

Figure 1. Test circuit

APPLICATION SUGGESTIONS

The volume control range is 0 to -79dB, by 1dB step resolution.

The very high resolution allows the implementation of systems free from any noise acoustical effect.

CREF

The suggested $10\mu F$ reference capacitor (CREF) value can be reduced to $4.7\mu F$ if the application requires faster power ON.

Figure 2. THD vs. frequency

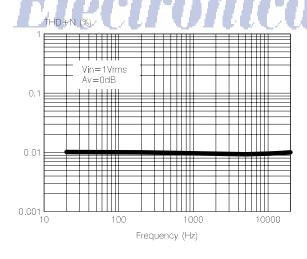


Figure 3. THD vs. RLOAD

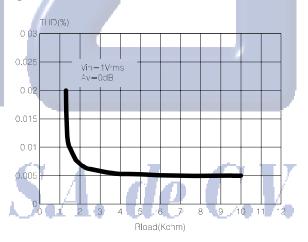
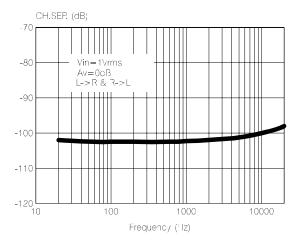



Figure 4. Channel separation vs. frequency

577

4/13