
INTEGRATED CIRCUITS

Product specification Supersedes data of 1998 Mar 13 2002 Mar 05

Product specification

4×40 W BTL quad car radio power amplifier

FEATURES

- · Requires very few external components
- High output power
- Low output offset voltage
- Fixed gain
- Diagnostic facility (distortion, short-circuit and temperature pre-warning)
- Good ripple rejection
- Mode select switch (operating, mute and standby)
- Load dump protection
- Short-circuit safe to ground and to V_{P} and across the load
- Low power dissipation in any short-circuit condition
- · Thermally protected
- Reverse polarity safe
- Electrostatic discharge protection
- No switch-on/switch-off plop
- Flexible leads
- Low thermal resistance
- Pin compatible with the TDA8568Q, except for the gain.

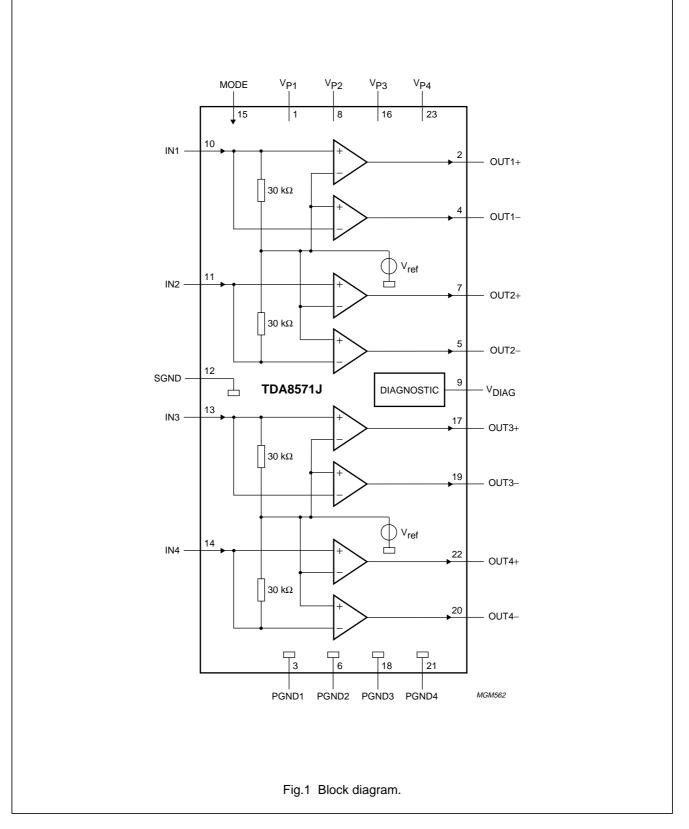
QUICK REFERENCE DATA

SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Vp operating supply voltage 6 14.4 18 V repetitive peak output current 7.5 А **I**ORM total quiescent current 200 mΑ I_{q(tot)} _ _ 0.2 100 uΑ standby current Istb switch-on current 80 _ μA I_{sw} $|Z_i|$ input impedance 25 30 kΩ _ THD = maximum 40 w P_{o(EIAJ)} EIAJ output power _ SVRR supply voltage ripple rejection $R_s = 0 \Omega$ 50 dB _ _ $R_s = 10 \ k\Omega$ dB channel separation 50 α_{cs} G_{v(cl)} closed-loop voltage gain 33 34 35 dB V_{n(o)} noise output voltage $R_s = 0 \Omega$ _ _ 170 μV MUTE Vos 80 DC output offset voltage mV $|\Delta V_{OS}|$ delta DC output offset voltage $ON \leftrightarrow MUTE$ 80 mV

ORDERING INFORMATION

TYPE	PE PACKAGE				
NUMBER	ER NAME DESCRIPTION VE				
TDA8571J	DBS23P	plastic DIL-bent-SIL power package; 23 leads (straight lead length 3.2 mm)	SOT411-1		

TDA8571J

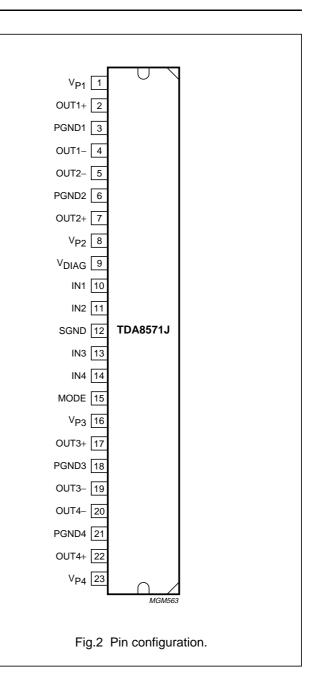

GENERAL DESCRIPTION

The TDA8571J is a integrated class-B output amplifier contained in a 23-lead Single-In-Line (SIL) plastic power package. It contains four amplifiers in a BTL configuration, each with a gain of 34 dB. The output power is 4×40 W (EIAJ) into a 4 Ω load.

APPLICATIONS

• Primarily developed for car radio applications.

BLOCK DIAGRAM



Product specification

4×40 W BTL quad car radio power amplifier

PINNING

SYMBOL	PIN	DESCRIPTION
V _{P1}	1	supply voltage 1
OUT1+	2	output 1+
PGND1	3	power ground 1
OUT1-	4	output 1–
OUT2-	5	output 2-
PGND2	6	power ground 2
OUT2+	7	output 2+
V _{P2}	8	supply voltage 2
V _{DIAG}	9	diagnostic output
IN1	10	input 1
IN2	11	input 2
SGND	12	signal ground
IN3	13	input 3
IN4	14	input 4
MODE	15	mode select switch input
V _{P3}	16	supply voltage 3
OUT3+	17	output 3+
PGND3	18	power ground 3
OUT3-	19	output 3–
OUT4-	20	output 4–
PGND4	21	power ground 4
OUT4+	22	output 4+
V _{P4}	23	supply voltage 4

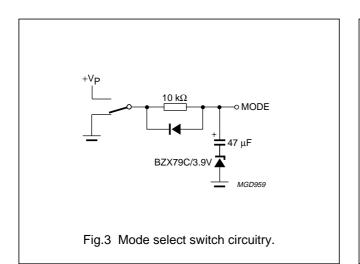
FUNCTIONAL DESCRIPTION

The TDA8571J contains four identical amplifiers which can be used for bridge applications. The gain of each amplifier is fixed at 34 dB.

Mode select switch (pin MODE)

- Standby: low supply current (<100 μA)
- Mute: input signal suppressed
- Operating: normal on condition.

Since this pin has a low input current (<80 μ A), a low cost supply switch can be applied.


To avoid switch-on plops, it is advised to keep the amplifier in the mute mode during \geq 150 ms (charging of the input capacitors at pins IN1, IN2, IN3 and IN4. When switching from standby to mute, the slope should be at least 18 V/s. This can be realized by:

- Microprocessor control
- External timing circuit (see Fig.3).

Diagnostic output (pin V_{DIAG})

DYNAMIC DISTORTION DETECTOR (DDD)

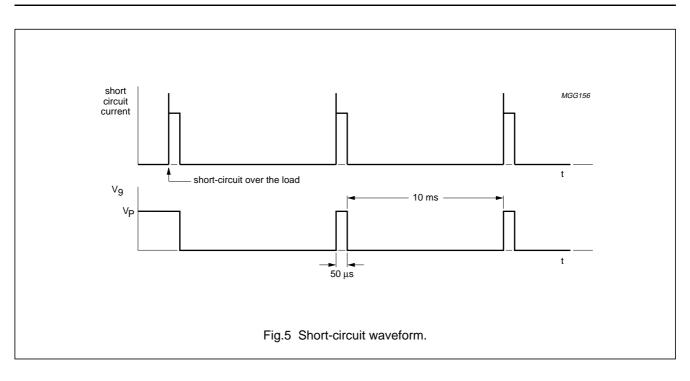
At the onset of clipping of one or more output stages, the dynamic distortion detector becomes active and pin V_{DIAG} goes LOW. This information can be used to drive a sound processor or DC volume control to attenuate the input signal and so limit the distortion. The output level of pin V_{DIAG} is independent of the number of channels that are clipping (see Fig.4).

SHORT-CIRCUIT DIAGNOSTIC

When a short-circuit occurs at one or more outputs to ground or to the supply voltage, the output stages are switched off until the short-circuit is removed and the device is switched on again, with a delay of approximately 10 ms after removal of the short-circuit. During this short-circuit condition, pin V_{DIAG} is continuously LOW.

When a short-circuit occurs across the load of one or more channels, the output stages are switched off during approximately 10 ms. After that time it is checked during approximately 50 μ s to determine whether the short-circuit is still present. Due to this duty cycle of 50 μ s/10 ms the average current consumption during this short-circuit condition is very low.


During this short-circuit condition, pin V_{DIAG} is LOW for 10 ms and HIGH for 50 μ s (see Fig.5). The protection circuits of all channels are coupled. This means that if a short-circuit condition occurs in **one** of the channels, **all** channels are switched off. Consequently, the power dissipation in any short-circuit condition is very low.

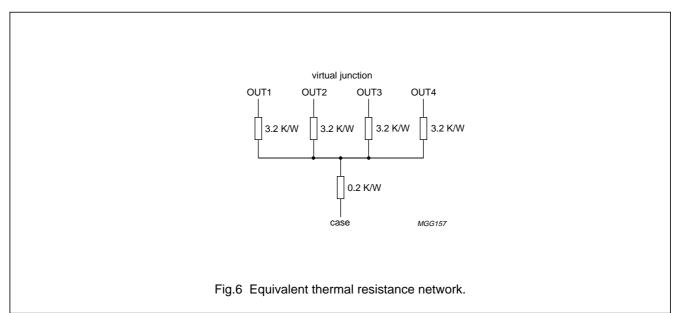

TEMPERATURE PRE-WARNING

When the virtual junction temperature T_{vj} reaches 145 $^\circ C,$ pin V_{DIAG} goes LOW.

OPEN-COLLECTOR OUTPUTS

The diagnostic pin has an open-collector output, so more devices can be tied together. An external pull-up resistor is needed.

TDA8571J


LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _P	supply voltage	operating	-	18	V
		non-operating	-	30	V
		load dump protection; during 50 ms; $t_r \ge 2.5$ ms	-	45	V
V _{sc(safe)}	short-circuit safe voltage		-	18	V
V _{rp}	reverse polarity voltage		-	6	V
I _{OSM}	non-repetitive peak output current		-	10	A
I _{ORM}	repetitive peak output current		-	7.5	A
P _{tot}	total power dissipation		-	60	W
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	ambient temperature		-40	+85	°C
T _{vj}	virtual junction temperature		-	150	°C

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient in free air	40	K/W
R _{th j-c}	thermal resistance from junction to case (see Fig.6)	1	K/W

QUALITY SPECIFICATION

In accordance with "General Quality Specification For Integrated Circuits (SNW-FQ-611D)".

DC CHARACTERISTICS

 V_{P} = 14.4 V; T_{amb} = 25 °C; measured in Fig.7; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply				4	1	1
VP	supply voltage	note 1	6	14.4	18	V
I _{q(tot)}	quiescent current	R _L = ∞	-	200	360	mA
Operating co	ondition					
V _{MODE}	mode select switch level		8.5	-	Vp	V
I _{MODE}	mode select switch current	V _{MODE} = 14.4 V	-	30	80	μA
Vo	output voltage	note 2	-	7.0	-	V
Mute conditi	on		·	•		
V _{MODE}	mode select switch level		3.3	-	6.4	V
Vo	output voltage	note 2	-	7.0	-	V
V _{OS}	DC output offset voltage	MUTE	-	-	80	mV
$ \Delta V_{OS} $	delta DC output offset voltage	$ON \leftrightarrow MUTE$	-	-	80	mV
Standby con	dition					
V _{MODE}	mode select switch level		0	-	2	V
I _{stb}	standby current		-	0.2	100	μA
Diagnostic						
V _{DIAG}	diagnostic output voltage	during any fault condition	-	-	0.6	V
T _{vj}	temperature pre-warning	V _{DIAG} = 0.6 V	-	145	-	°C

Notes

1. The circuit is DC adjusted at V_P = 6 to 18 V and AC operating at V_P = 8.5 to 18 V.

2. At 18 V < V_P < 30 V the DC output voltage $\leq \frac{1}{2}$ V_P.

TDA8571J

AC CHARACTERISTICS

 V_P = 14.4 V; R_L = 4 Ω ; f = 1 kHz; T_{amb} = 25 °C; measured in Fig.7; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Po	output power	THD = 0.5%	16	19	-	W
		THD = 10%	21	26	-	W
		V _P = 13.7 V; THD = 0.5%	-	17.5	-	W
		V _P = 13.7 V; THD = 10%	-	23	-	W
P _{o(EIAJ)}	EIAJ output power	THD = maximum; $V_i = 2 V (p-p)$ square wave	35	40	-	W
P _{o(max)}	maximum output power	THD = maximum; V_P = 15.2 V; V_i = 2 V (p-p) square wave	40	45	-	W
THD	total harmonic distortion	P _o = 1 W	-	0.1	_	%
		V _{MODE} = 0.6 V; note 1	-	10	-	%
B _p	power bandwidth	THD = 0.5%; $P_o = -1 dB$ with respect to 16 W	-	20 to 20000	-	Hz
f _{ro(l)}	low frequency roll-off	at –1 dB; note 2	-	25	-	Hz
f _{ro(h)}	high frequency roll-off	at –1 dB	20	_	-	kHz
G _{v(cl)}	closed-loop voltage gain		33	34	35	dB
SVRR	supply voltage ripple rejection	R _s = 0 Ω; maximum ripple V _{ripple} = 2 V (p-p)				
		on	40	_	_	dB
		mute	50	_	-	dB
		standby	80	_	_	dB
Z _i	input impedance		25	30	38	kΩ
V _{n(o)}	noise output voltage	B = 20 Hz to 20 kHz				
()		on; $R_s = 0 \Omega$	-	125	170	μV
		on; $R_s = 10 \text{ k}\Omega$	-	150	-	μV
		mute; independent of R _s	-	100	-	μV
α_{cs}	channel separation	$P_0 = 16$ W; $R_s = 10$ kΩ	45	_	-	dB
$ \Delta G_v $	channel unbalance		-	_	1	dB
Vo	output signal in mute	maximum input voltage V _i = 1 V (RMS)	-	-	2	mV

Notes

1. Dynamic Distortion Detector (DDD) active, pin V_{DIAG} is set to LOW level.

2. Frequency response externally fixed.

TDA8571J

TEST AND APPLICATION INFORMATION

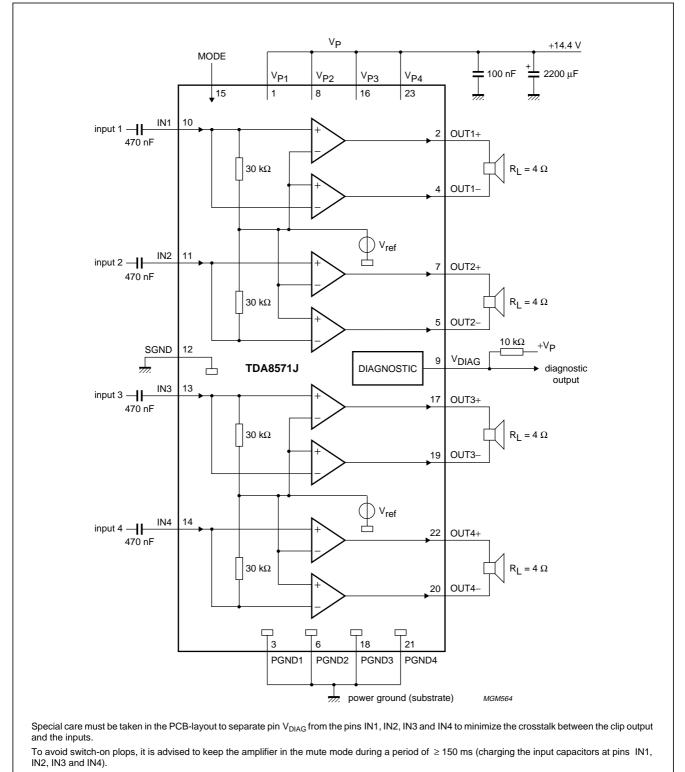
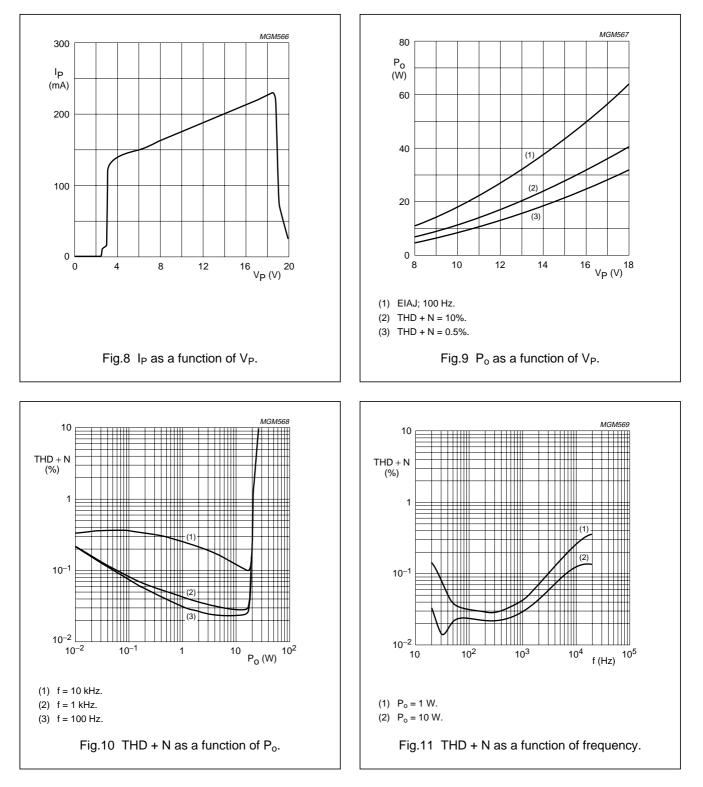
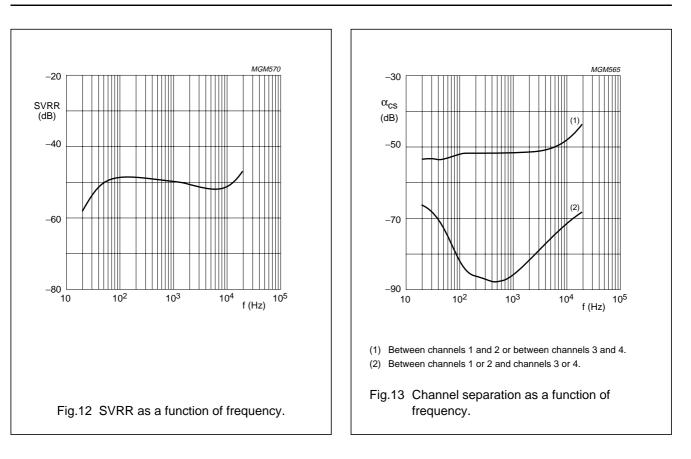
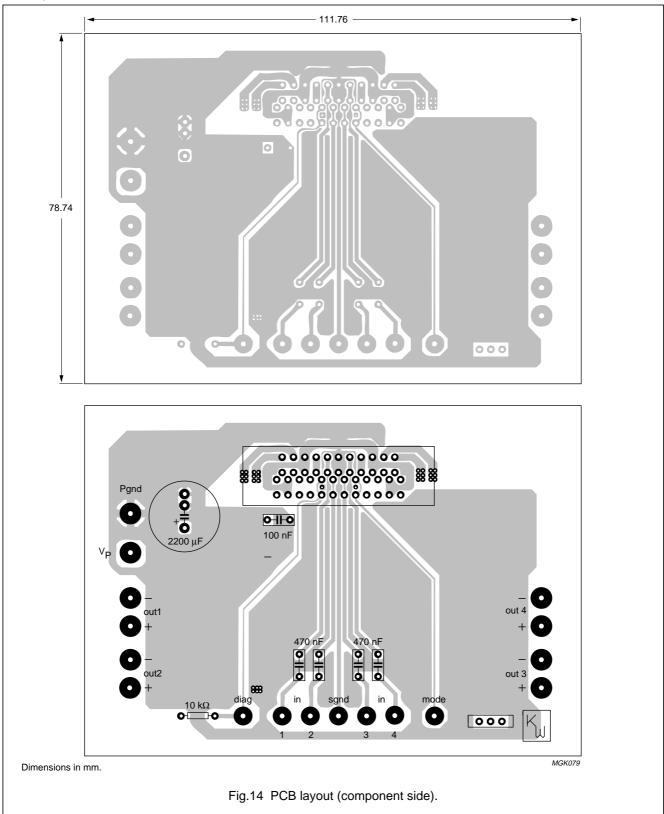
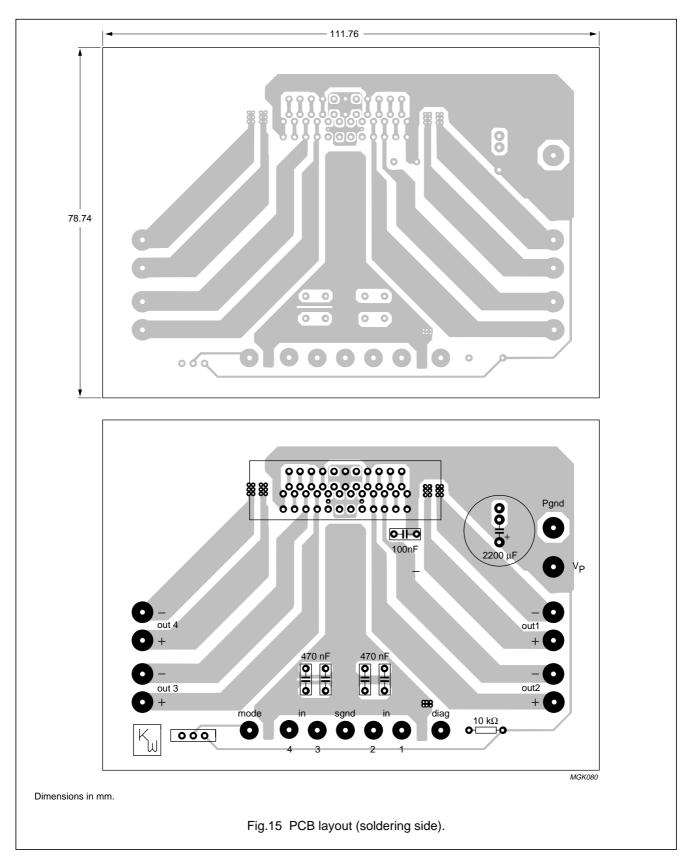



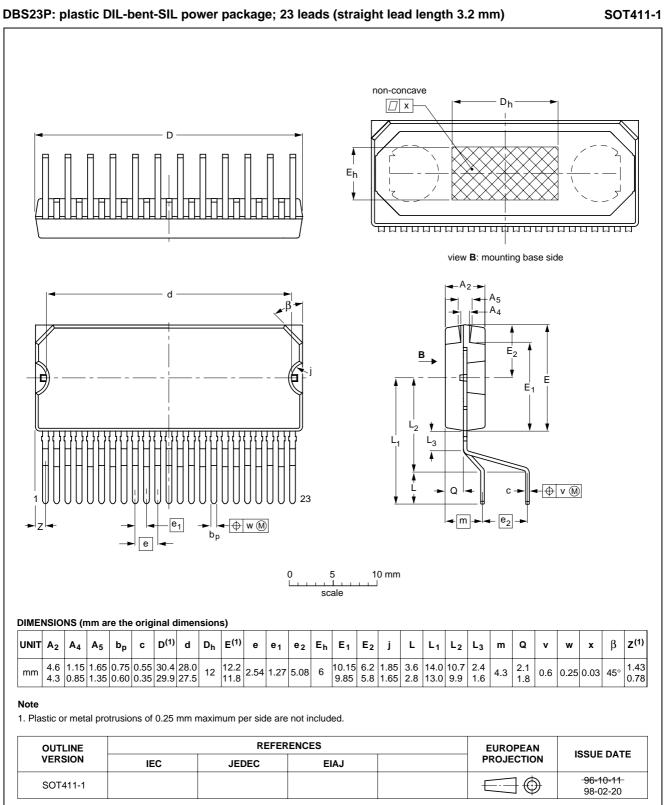
Fig.7 Application circuit diagram.


Test information

Figures 8 to 13 have the following conditions: $V_P = 14.4 \text{ V}$; $R_L = 4 \Omega$; f = 1 kHz; 80 kHz filter used; unless otherwise specified.


TDA8571J


4×40 W BTL quad car radio power amplifier


2002 Mar 05

PCB layout

PACKAGE OUTLINE

SOLDERING

Introduction to soldering through-hole mount packages

This text gives a brief insight to wave, dip and manual soldering. A more in-depth account of soldering ICs can be found in our *"Data Handbook IC26; Integrated Circuit Packages"* (document order number 9398 652 90011).

Wave soldering is the preferred method for mounting of through-hole mount IC packages on a printed-circuit board.

Soldering by dipping or by solder wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joints for more than 5 seconds.

The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg(max)}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Manual soldering

Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 $^{\circ}$ C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 $^{\circ}$ C, contact may be up to 5 seconds.

Suitability of through-hole mount IC packages for dipping and wave soldering methods

PACKAGE	SOLDERING METHOD		
PACKAGE	DIPPING	WAVE	
DBS, DIP, HDIP, SDIP, SIL	suitable	suitable ⁽¹⁾	

Note

1. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.

TDA8571J

DATA SHEET STATUS

DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾	DEFINITIONS
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

1. Please consult the most recently issued data sheet before initiating or completing a design.

2.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.