Complementary Silicon Plastic Power Transistors

Designed for use in general purpose amplifier and switching applications.

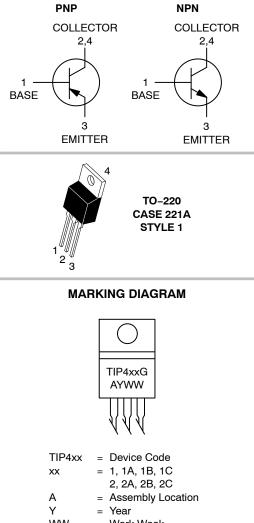
Features

- Epoxy Meets UL 94 V-0 @ 0.125 in
- These Devices are Pb-Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage TIP41G, TIP42G TIP41AG, TIP42AG TIP41BG, TIP42BG TIP41CG, TIP42CG	V _{CEO}	40 60 80 100	Vdc
Collector-Base Voltage TIP41G, TIP42G TIP41AG, TIP42AG TIP41BG, TIP42BG TIP41CG, TIP42CG	V _{CB}	40 60 80 100	Vdc
Emitter-Base Voltage	V _{EB}	5.0	Vdc
Collector Current – Continuous	Ι _C	6.0	Adc
Collector Current – Peak	I _{CM}	10	Adc
Base Current	Ι _Β	2.0	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	65 0.52	W W/°C
Total Power Dissipation @ T _A = 25°C Derate above 25°C	P _D	2.0 0.016	W W/°C
Unclamped Inductive Load Energy (Note 1)	E	62.5	mJ
Operating and Storage Junction, Temperature Range	T _J , T _{stg}	-65 to +150	°C
ESD – Human Body Model	HBM	3B	V
ESD – Machine Model	MM	С	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. $I_C = 2.5 A$, L = 20 mH, P.R.F. = 10 Hz, $V_{CC} = 10 V$, $R_{BE} = 100 \Omega$.


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor®

www.onsemi.com

6 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS 40–60–80–100 VOLTS, 65 WATTS

WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	R _{θJC}	1.67	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	57	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•	
Collector-Emitter Sustaining Voltage (Note 2) ($I_C = 30 \text{ mAdc}$, $I_B = 0$) TIP41G, TIP42G TIP41AG, TIP42AG TIP41BG, TIP42BG TIP41CG, TIP42CG	V _{CEO(sus)}	40 60 80 100	- - -	Vdc
Collector Cutoff Current (V_{CE} = 30 Vdc, I_B = 0) TIP41G, TIP41AG, TIP42G, TIP42AG (V_{CE} = 60 Vdc, I_B = 0) TIP41BG, TIP41CG, TIP42BG, TIP42CG	I _{CEO}	-	0.7 0.7	mAdc
Collector Cutoff Current ($V_{CE} = 40 \text{ Vdc}, V_{EB} = 0$) TIP41G, TIP42G ($V_{CE} = 60 \text{ Vdc}, V_{EB} = 0$) TIP41AG, TIP42AG ($V_{CE} = 80 \text{ Vdc}, V_{EB} = 0$) TIP41BG, TIP42BG ($V_{CE} = 100 \text{ Vdc}, V_{EB} = 0$) TIP41CG, TIP42CG	ICES	- - -	400 400 400 400	μAdc
Emitter Cutoff Current (V_{BE} = 5.0 Vdc, I_{C} = 0)	I _{EBO}	-	1.0	mAdc
ON CHARACTERISTICS (Note 2)				
DC Current Gain (I _C = 0.3 Adc, V _{CE} = 4.0 Vdc) (I _C = 3.0 Adc, V _{CE} = 4.0 Vdc)	h _{FE}	30 15	_ 75	-
Collector-Emitter Saturation Voltage (I _C = 6.0 Adc, I _B = 600 mAdc)	V _{CE(sat)}	_	1.5	Vdc
Base-Emitter On Voltage	V _{BE(on)}			Vdc

 $(I_{C} = 6.0 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc})$ **DYNAMIC CHARACTERISTICS**

Current–Gain – Bandwidth Product (I _C = 500 mAdc, V _{CE} = 10 Vdc, f _{test} = 1.0 MHz)	f _T	3.0	_	MHz
Small–Signal Current Gain $(I_C = 0.5 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{fe}	20	_	_

2.0

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

TIP41G, TIP41AG, TIP41BG, TIP41CG (NPN), TIP42G, TIP42AG, TIP42BG, TIP42CG (PNP)

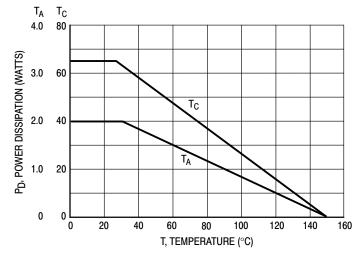
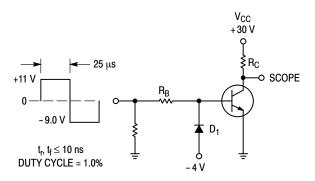



Figure 1. Power Derating

 R_B and R_C VARIED TO OBTAIN DESIRED CURRENT LEVELS D_1 MUST BE FAST RECOVERY TYPE, e.g.: 1N5825 USED ABOVE $I_B\approx$ 100 mA MSD6100 USED BELOW $I_B\approx$ 100 mA

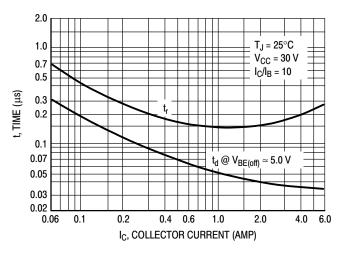


Figure 3. Turn-On Time

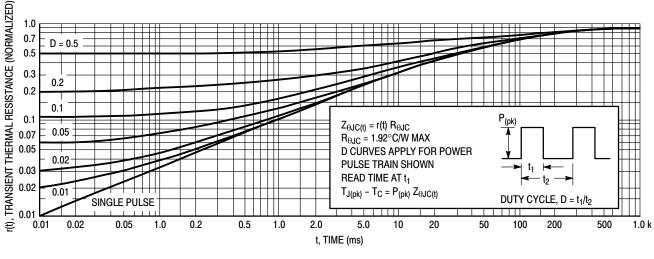


Figure 4. Thermal Response

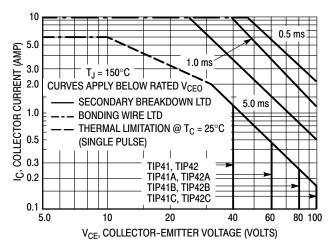
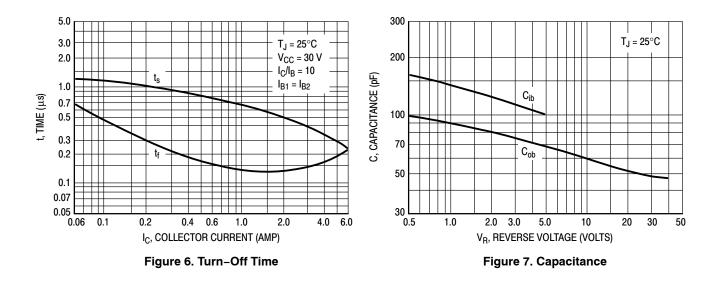
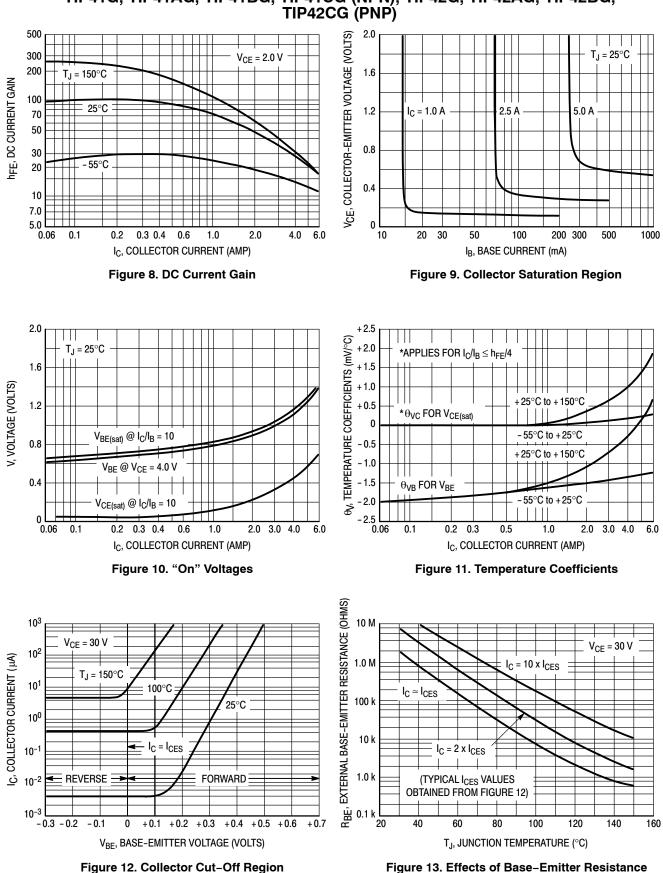
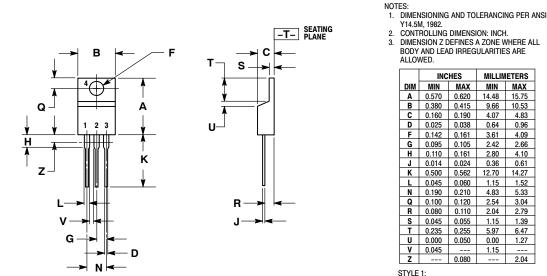




Figure 5. Active-Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 5 is based on $T_{J(pk)} = 150^{\circ}$ C; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}$ C. $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.



ORDERING INFORMATION

Device	Package	Shipping
TIP41G	TO-220 (Pb-Free)	50 Units / Rail
TIP41AG	TO-220 (Pb-Free)	50 Units / Rail
TIP41BG	TO-220 (Pb-Free)	50 Units / Rail
TIP41CG	TO-220 (Pb-Free)	50 Units / Rail
TIP42G	TO-220 (Pb-Free)	50 Units / Rail
TIP42AG	TO-220 (Pb-Free)	50 Units / Rail
TIP42BG	TO-220 (Pb-Free)	50 Units / Rail
TIP42CG	TO-220 (Pb-Free)	50 Units / Rail

PACKAGE DIMENSIONS

TO-220 CASE 221A-09 ISSUE AH

PIN 1. BASE

COLLECTOR
EMITTER

4. COLLECTOR

ON Semiconductor and the intervent and the intervent of the patient patient of the patient patient of the patient patient of the patient patient of the patient patient of the patient of

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

TIP41 TIP41AG TIP41BG TIP41CG TIP41G TIP42A TIP42AG TIP42BG TIP42BG TIP42CG TIP42G TIP42