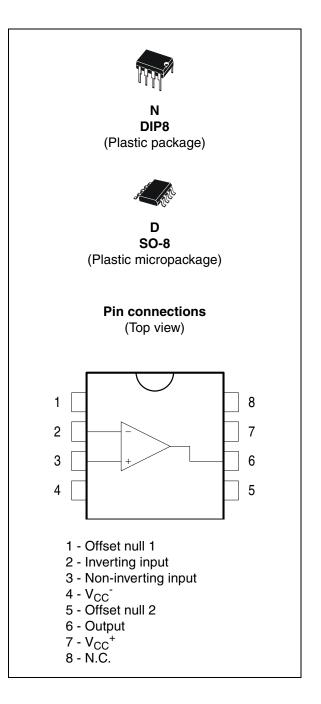


TL071

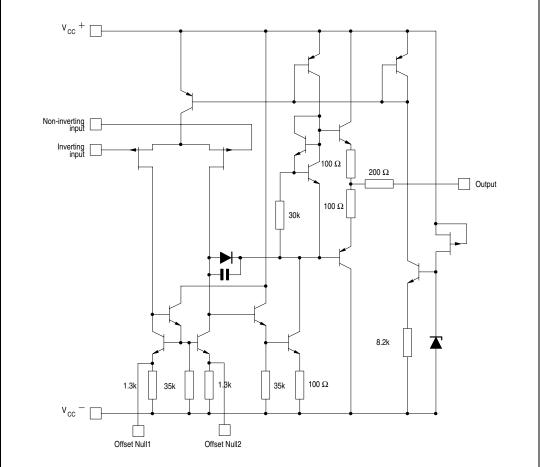
Low noise JFET single operational amplifier

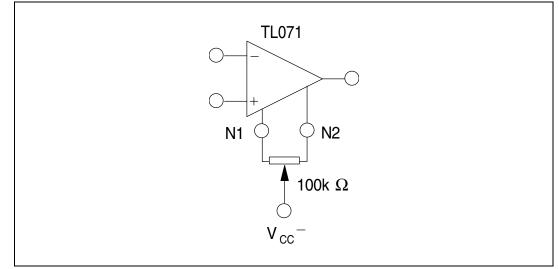

Features

- Wide common-mode (up to V_{CC}⁺) and differential voltage range
- Low input bias and offset currenT
- Low noise $e_n = 15 \text{ nV} / \sqrt{\text{Hz} (\text{typ})}$
- Output short-circuit protection
- High input impedance JFET input stage
- Low harmonic distortion: 0.01 % (typ)
- Internal frequency compensation
- Latch-up free operation
- High slew rate: 16 V /µs (typ)

Description

The TL071 is a high-speed JFET input single operational amplifier. This JFET input operational amplifier incorporates well matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit.


The device features high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient.


57

1 Schematic diagram

Figure 2. Input offset voltage null circuit

2 Absolute maximum ratings and operating conditions

Symbol	Parameter		Value		Unit
Symbol	Farameter	TL071M, AM, BM	TL071I, AI, BI	TL071C, AC, BC	Unit
V _{CC}	Supply voltage ⁽¹⁾		±18		V
Vi	Input voltage ⁽²⁾		±15		V
V _{id}	Differential input voltage (3)		±30		V
R _{thja}	Thermal resistance junction to ambient ^{(4) (5)} SO-8 DIP8	125 85		°C/W	
R _{thjc}	Thermal resistance junction to case ^{(4) (5)} SO-8 DIP8	40 41		°C/W	
	Output short-circuit duration (6)		Infinite		
T _{oper}	Operating free-air temperature range	-55 to +125	-40 to +105	0 to +70	°C
T _{stg}	Storage temperature range	rature range -65 to +150		°C	
	HBM: human body model ⁽⁷⁾	500		V	
ESD	MM: machine model ⁽⁸⁾	200		V	
	CDM: charged device model ⁽⁹⁾		1500		V

Table 1. Absolute maximum ratings

 All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC}⁺ and V_{CC}⁻.

2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.

3. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.

- 4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuits on all amplifiers.
- 5. Rth are typical values.
- The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
- Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
- Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

Table 2.Operating conditions

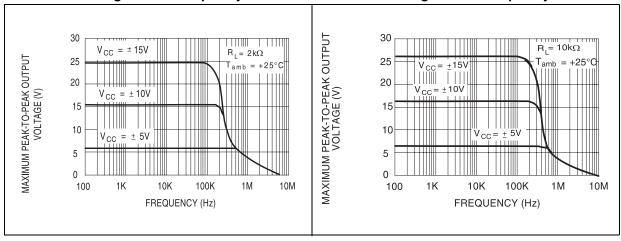
Symbol	Parameter	TL071I, AI, BI	TL071C, AC, BC	Unit
V _{CC}	Supply voltage 6 to 36			V
T _{oper}	Operating free-air temperature range	-40 to +105	0 to +70	°C

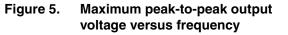
3 Electrical characteristics

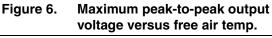
Symbol	Parameter		TL071I,M,AC,AI,AM, BC,BI,BM			TL071C		
		Min.	Тур.	Max.	Min.	Тур.	Max.	
V _{io}	$\begin{array}{l} \text{Input offset voltage (} R_{s} = 50 \Omega \text{)} \\ T_{amb} = +25^{\circ} C & TL071 \\ & TL071A \\ TL071B \\ T_{min} \leq T_{amb} \leq T_{max} & TL071 \\ & TL071A \\ & TL071B \end{array}$		3 3 1	10 6 3 13 7 5		3	10 13	mV
DV _{io}	Input offset voltage drift		10			10		μV/°C
l _{io}	Input offset current $T_{amb} = +25^{\circ}C$ $T_{min} \leq T_{amb} \leq T_{max}$		5	100 4		5	100 10	pA nA
I _{ib}	Input bias current ⁽¹⁾ $T_{amb} = +25^{\circ}C$ $T_{min} \leq T_{amb} \leq T_{max}$		20	200 20		20	200 20	pA nA
A _{vd}	$ \begin{array}{l} \mbox{Large signal voltage gain (R_L=2k\Omega, V_o=\pm10V)} \\ T_{amb}=+25^{\circ}C \\ T_{min}\leq T_{amb}~\leq T_{max} \end{array} $	50 25	200		25 15	200		V/mV
SVR	$ \begin{array}{l} Supply \mbox{ voltage rejection ratio } (R_S = 50 \Omega) \\ T_{amb} = +25^{\circ} C \\ T_{min} \leq T_{amb} \ \leq T_{max} \end{array} $	80 80	86		70 70	86		dB
I _{CC}	$ \begin{array}{l} Supply \ current, \ no \ load \\ T_{amb} = +25^{\circ}C \\ T_{min} \leq T_{amb} \ \leq T_{max} \end{array} $		1.4	2.5 2.5		1.4	2.5 2.5	mA
V _{icm}	Input common mode voltage range	±11	+15 -12		±11	+15 -12		v
CMR	Common mode rejection ratio ($R_S = 50\Omega$) $T_{amb} = +25^{\circ}C$ $T_{min} \leq T_{amb} \leq T_{max}$	80 80	86		70 70	86		dB
l _{os}	Output short-circuit current $T_{amb} = +25^{\circ}C$ $T_{min} \leq T_{amb} \leq T_{max}$	10 10	40	60 60	10 10	40	60 60	mA
$\pm V_{opp}$	$ \begin{array}{ll} Output \ voltage \ swing \\ T_{amb} = +25^{\circ}C & R_L = 2k\Omega \\ & R_L = 10k\Omega \\ T_{min} \leq T_{amb} \leq T_{max} & R_L = 2k\Omega \\ & R_L = 10k\Omega \end{array} $	10 12 10 12	12 13.5		10 12 10 12	12 13.5		V
SR	Slew rate $V_{in} = 10V, R_L = 2k\Omega, C_L = 100pF$, unity gain	8	16		8	16		V/µs

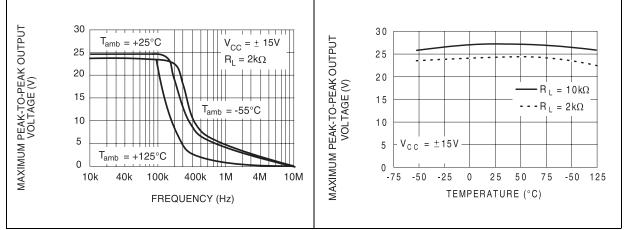
Table 3. $V_{CC} = \pm 15V$, $T_{amb} = +25^{\circ}C$ (unless otherwise specified)

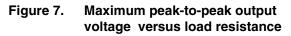
4/15

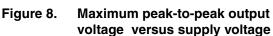

Symbol	Parameter	TL071I,M,AC,AI,AM, BC,BI,BM			TL071C			Unit
		Min.	Тур.	Max.	Min.	Тур.	Max.	
t _r	Rise time $V_{in} = 20mV, R_L = 2k\Omega, C_L = 100pF, unity gain$		0.1			0.1		μs
K _{ov}	Overshoot V _{in} = 20mV, R _L = 2kΩ, C _L = 100pF, unity gain		10			10		%
GBP	Gain bandwidth product $V_{in} = 10mV, R_L = 2k\Omega, C_L = 100pF, f= 100kHz$	2.5	4		2.5	4		MHz
R _i	Input resistance		10 ¹²			10 ¹²		W
THD	Total harmonic distortion, f= 1kHz, R _L = $2k\Omega C_L = 100pF$, A _v = 20dB, V _o = $2V_{pp}$)		0.01			0.01		%
e _n	Equivalent input noise voltage $R_S = 100\Omega$, f = 1KHz		15			15		$\frac{nV}{\sqrt{Hz}}$
Øm	Phase margin		45			45		degrees

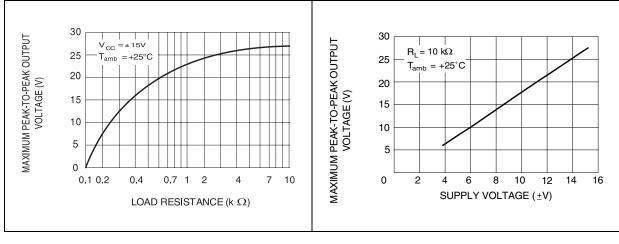

Table 3. $V_{CC} = \pm 15V$, $T_{amb} = +25^{\circ}C$ (unless otherwise specified) (continued)

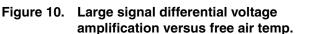

1. The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature.




Figure 3. Maximum peak-to-peak output voltage versus frequency







6/15

Figure 9. Input bias current versus free air temperature

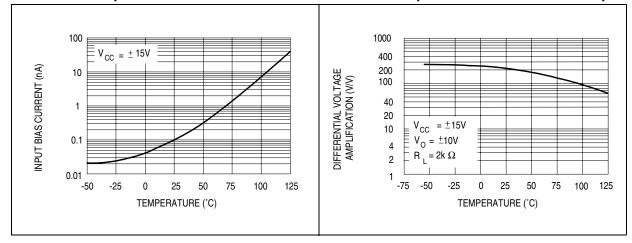


Figure 11. Large signal differential voltage amplification and phase shift versus frequency

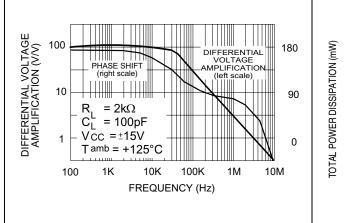


Figure 12. Total power dissipation versus free air temperature

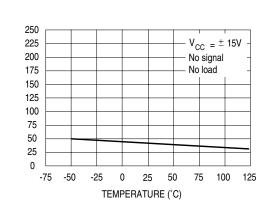


Figure 13. Supply current per amplifier versus Figure 14. Common mode rejection ratio free air temperature versus free air temperature

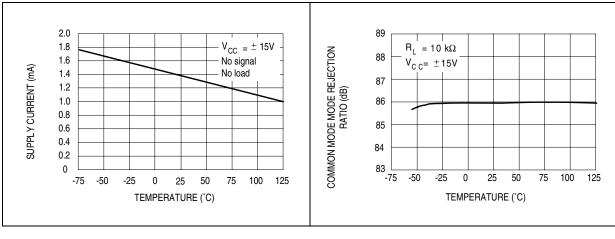


Figure 15. Voltage follower large signal pulse Figure 16. Output voltage versus elapsed time response

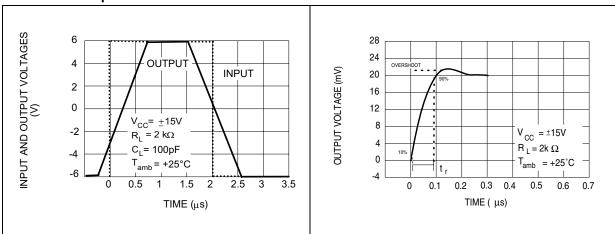
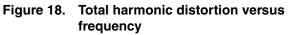
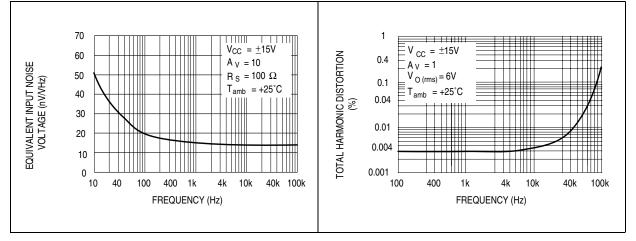
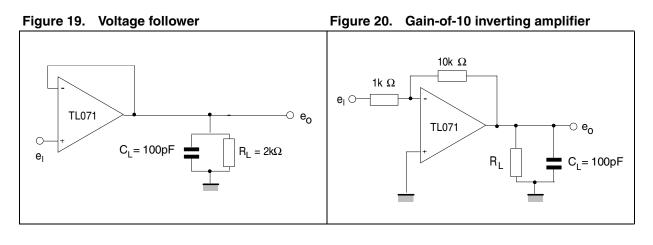
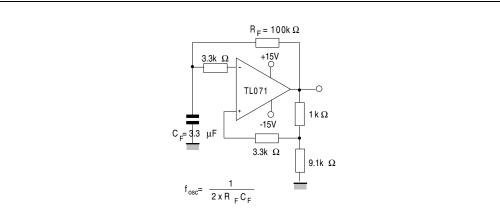
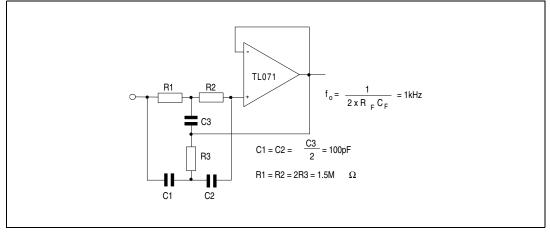





Figure 17. Equivalent input noise voltage versus frequency

Parameter measurement information



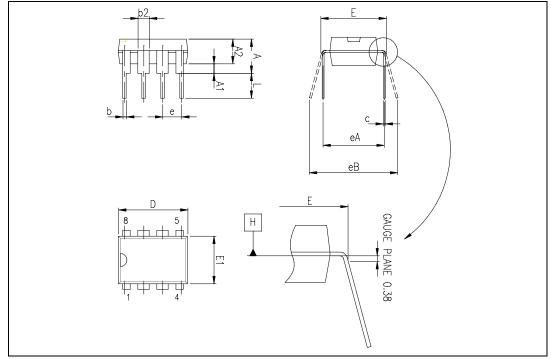
8/15


57

4 Typical applications

Figure 21.	(0.5 Hz) Square wave oscillator

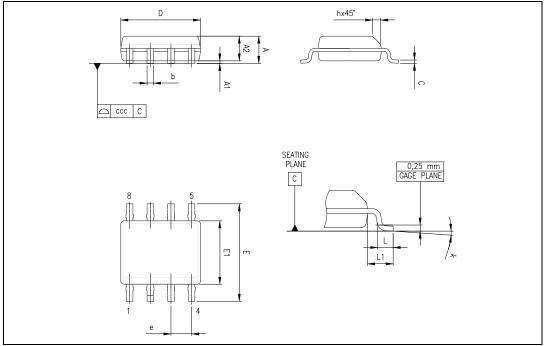
5 Package information


In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK[®] packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: <u>www.st.com</u>.

10/15

5.1 DIP8 package information

Figure 23. DIP8 package mechanical drawing


Table 4.	DIP8 package	mechanical data

			Dimer	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			5.33			0.210
A1	0.38			0.015		
A2	2.92	3.30	4.95	0.115	0.130	0.195
b	0.36	0.46	0.56	0.014	0.018	0.022
b2	1.14	1.52	1.78	0.045	0.060	0.070
С	0.20	0.25	0.36	0.008	0.010	0.014
D	9.02	9.27	10.16	0.355	0.365	0.400
Е	7.62	7.87	8.26	0.300	0.310	0.325
E1	6.10	6.35	7.11	0.240	0.250	0.280
е		2.54			0.100	
eA		7.62			0.300	
eB			10.92			0.430
L	2.92	3.30	3.81	0.115	0.130	0.150

5.2 SO-8 package information

Table 5. SO-8 package mechanical data

		<u>.</u>		nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
С	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
E	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
е		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
L1		1.04			0.040	
k	1°		8°	1 °		8°
ссс			0.10			0.004

TL071

6 Ordering information

Table 6. Order codes

Part number	Temperature range	Package	Packing	Marking
TL071IN TL071AIN TL071BIN	40°C +105°C	DIP8	Tube	TL071IN TL071AIN TL071BIN
TL071ID/IDT TL071AID/AIDT TL071BID/BIDT	ND/AIDT SO-8 Tube or tape & reel		071I 071AI 071BI	
TL071CN TL071ACN TL071BCN	0°C, +70°C	DIP8	Tube	TL071CN TL071ACN TL071BCN
TL071CD/CDT TL071ACD/ACDT TL071BCD/BCDT	L071CD/CDT L071ACD/ACDT SO-8		Tube or tape & reel	071C 071AC 071BC
TL071IYD/DT ⁽¹⁾ TL071AIYD/DT ⁽¹⁾ TL071BIYD/DT ⁽¹⁾	-40°C, +105°C	SO-8 (Automotive grade)	Tube or tape & reel	071IY 071AIY 071BIY

 Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going.

7 Revision history

evision history
•

Date	Revision	Changes
29-Mar-2001	1	Initial release.
30-Jul-2007	2	Added values for R _{thja} , R _{thjc} and ESD in <i>Table 1: Absolute maximum ratings</i> . Added <i>Table 2: Operating conditions</i> . Expanded <i>Table 6: Order codes</i> . Format update.
19-Sep-2008	3	Corrected ESD HBM value in <i>Table 1: Absolute maximum ratings</i> . Added L1 parameter in <i>Table 5: SO-8 package mechanical data</i> . Added missing order codes for automotive grade products in <i>Table 6: Order codes</i> . Removed information concerning military temperature ranges (TL071Mx, TL071AMx, TL071BMx) in <i>Table 6</i> .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

