

ULN2001, ULN2002 ULN2003, ULN2004

Seven Darlington arrays

Datasheet - production data

Features

- Seven Darlingtons per package
- Output current 500 mA per driver (600 mA peak)
- Output voltage 50 V
- Integrated suppression diodes for inductive loads
- Outputs can be paralleled for higher current
- TTL/CMOS/PMOS/DTL compatible inputs
- Input pins placed opposite to output pins to simplify layout

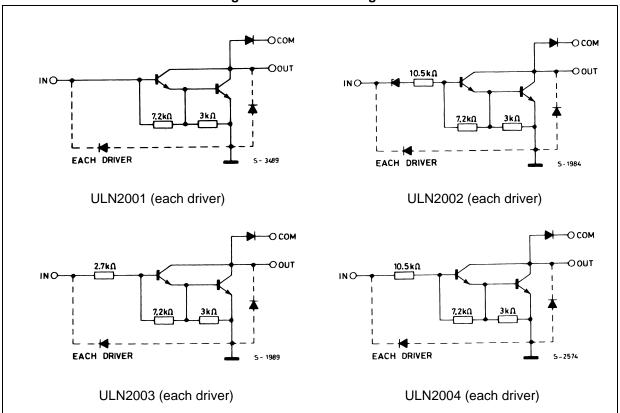
Description

The ULN2001, ULN2002, ULN2003 and ULN 2004 are high-voltage, high-current Darlington arrays each containing seven open collector Darlington pairs with common emitters. Each channel is rated at 500 mA and can withstand peak currents of 600 mA. Suppression diodes are included for inductive load driving and the inputs are pinned opposite the outputs to simplify board layout.

The versions interface to all common logic families: ULN2001 (general purpose, DTL, TTL, PMOS, CMOS); ULN2002 (14 - 25 V PMOS); ULN2003 (5 V TTL, CMOS); ULN2004 (6 - 15 V CMOS, PMOS).

These versatile devices are useful for driving a wide range of loads including solenoids, relay DC motors, LED display filament lamps, thermal printheads and high-power buffers.

The ULN2001A/2002A/2003A and 2004A are supplied in a 16-pin DIP package with a copper leadframe to reduce thermal resistance. They are available also in small outline package (SO-16) as ULN2001D1/2002D1/2003D1/2004D1.


Contents

1	Diagram 3
2	Pin configuration
3	Maximum ratings
4	Electrical characteristics6
5	Test circuits
6	Typical performance characteristics
7	Package information
	7.1 DIP-16L package information
	7.2 SO-16 Narrow package information
8	Order codes
9	Revision history

1 Diagram

Figure 1. Schematic diagram

2 Pin configuration

16 OUT 1 IN 1 15 OUT 2 IN 2 14 OUT 3 IN 3 13 OUT 4 IN 4 12 OUT 5 IN 5 11 OUT 6 IN 6 10 OUT 7 IN 7 9 COMMON FREE WHEELING DIODES GND 8 5-1977/1

Figure 2. Pin connections (top view)

577

3 Maximum ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _O	Output voltage	50	V
V _I	Input voltage (for ULN2002A/D - 2003A/D - 2004A/D)	30	V
I _C	Continuous collector current	500	mA
I _B	Continuous base current	25	mA
I _F	Clamping diode continuous current	350	mA
V _R	Clamping diode reverse voltage	50	V
T _A	Operating ambient temperature range	- 40 to 85	°C
T _{STG}	Storage temperature range	- 55 to 150	°C
T _J	Junction temperature	150	°C
ESD	Electrostatic discharge rating - HBM	2	kV

Table 2. Thermal data

Symbol	Parameter	DIP-16	SO-16	Unit
R _{thJA}	Thermal resistance junction-ambient, Max.	70	120	°C/W

Note:

Maximum power dissipation is a function of $T_{J(max)}$, R_{thJA} and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(max)} - T_A) / R_{thJA}$. Operating at the absolute maximum T_J of +150°C can affect reliability.

4 Electrical characteristics

 $T_A = 25~^{\circ}C$ unless otherwise specified.

Table 3. Electrical characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit	
		V _{CE} = 50 V, (<i>Figure 3</i>)			50		
I _{CEX}	Output leakage current	T _A = 85 °C, V _{CE} = 50 V (<i>Figure 3</i>)			100	μΑ	
		$T_A = 85$ °C for ULN2002, $V_{CE} = 50$ V, $V_I = 6$ V (<i>Figure 4</i>)			500		
		$T_A = 85 ^{\circ}\text{C} \text{ for ULN2002, V}_{CE} = 50 ^{\circ}\text{V},$ $V_I = 1 ^{\circ}\text{V} (Figure 4)$			500		
		$I_C = 100 \text{ mA}, I_B = 250 \mu\text{A}$		0.9	1.1		
$V_{CE(SAT)}$	Collector-emitter saturation voltage (<i>Figure 5</i>)	$I_C = 200 \text{ mA}, I_B = 350 \mu\text{A}$		1.1	1.3	V	
	Transge (Figure 5)	$I_C = 350 \text{ mA}, I_B = 500 \mu\text{A}$		1.3	1.6		
		for ULN2002, V _I = 17 V		0.82	1.25		
ı	Input ourront (Figure 6)	for ULN2003, V _I = 3.85 V		0.93	1.35		
I _{I(ON)}	Input current (Figure 6)	for ULN2004, V _I = 5 V		0.35	0.5	mA	
		V _I = 12 V		1	1.45		
I _{I(OFF)}	Input current (Figure 7)	T _A = 85 °C, I _C = 500 μA	50	65		μΑ	
V _{I(ON)}	Input voltage (Figure 8)	V_{CE} = 2 V, for ULN2002 I_{C} = 300 mA for ULN2003 I_{C} = 200 mA I_{C} = 250 mA I_{C} = 300 mA for ULN2004 I_{C} = 125 mA I_{C} = 200 mA I_{C} = 200 mA I_{C} = 350 mA			13 2.4 2.7 3 5 6 7 8	٧	
h _{FE}	DC Forward current gain (Figure 5)	for ULN2001, $V_{CE} = 2 V$, $I_C = 350 \text{ mA}$	1000				
C _I	Input capacitance			15	25	pF	
t _{PLH}	Turn-on delay time	0.5 V _I to 0.5 V _O		0.25	1	μs	
t _{PHL}	Turn-off delay time	0.5 V _I to 0.5 V _O		0.25	1	μs	
I _R	Clamp diode leakage current	V _R = 50 V			50		
'R 	(Figure 9)	$T_A = 85 ^{\circ}C, V_R = 50 V$			μA 100		
V _F	Clamp diode forward voltage (Figure 10)	I _F = 350 mA		1.7	2	V	

5 Test circuits

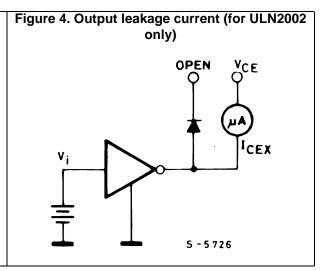
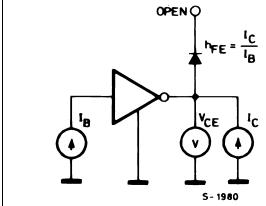



Figure 5. Collector-emitter saturation voltage

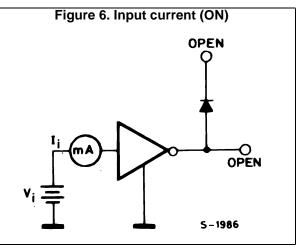
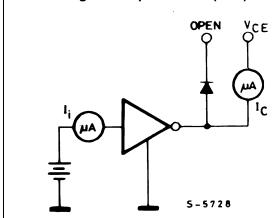
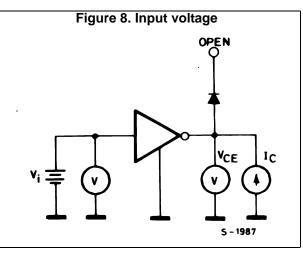
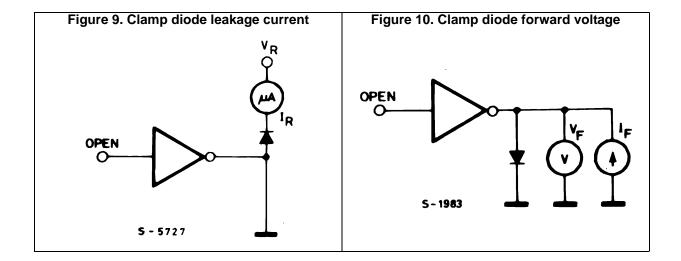
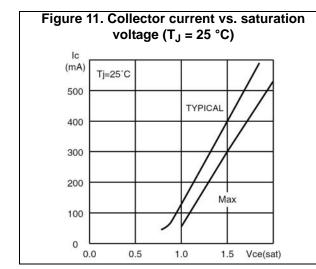





Figure 7. Input current (OFF)



5//

57

6 Typical performance characteristics

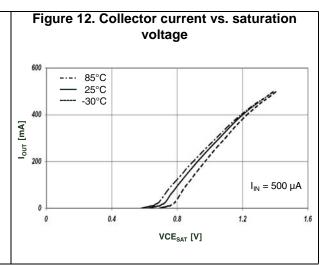
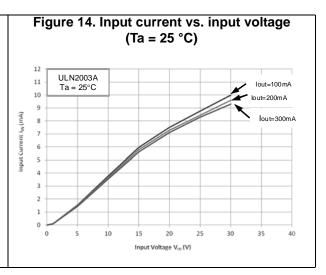
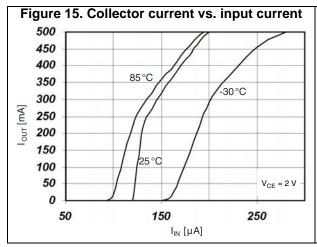
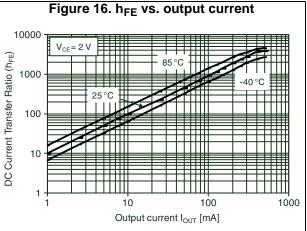


Figure 13. Input current vs. input voltage

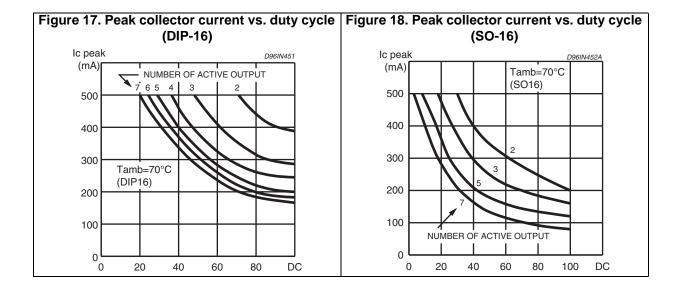

ULN2003A


Typ


Min

Min

Input Voltage V_{IN} (V)



57/

DocID5279 Rev 12

9/17

47/

Package information 7

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

7.1 **DIP-16L package information**

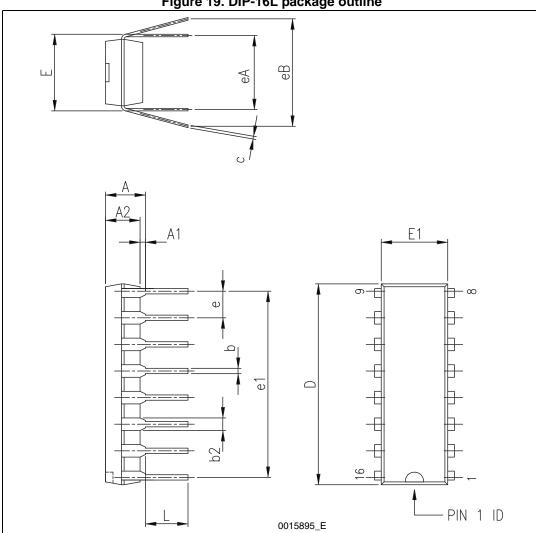


Figure 19. DIP-16L package outline

Table 4. DIP-16L mechanical data

Dim.	mm.				
Dilli.	Min.	Тур.	Max.		
A			5.33		
A1	0.38				
A2	2.92	3.30	4.95		
b	0.36	0.46	0.56		
b2	1.14	1.52	1.78		
С	0.20	0.25	0.36		
D	18067	19.18	19.69		
E	7.62	7.87	8.26		
E1	6.10	6.35	7.11		
е		2.54			
e1		17.78			
eA		7.62			
eB			10.92		
L	2.92	3.30	3.81		

47/

7.2 SO-16 Narrow package information

Figure 20. SO-16 package outline

Table 5. SO-16 Narrow mechanical data

Dim	mm.			inch.		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.75			0.069
a1	0.1		0.25	0.004		0.009
a2			1.6			0.063
b	0.35		0.46	0.014		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.020	
c1			45°	(typ.)		
D(1)	9.8		10	0.386		0.394
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F(1)	3.8		4.0	0.150		0.157
G	4.60		5.30	0.181		0.208
L	0.4		1.27	0.150		0.050
М			0.62			0.024
S	8° (max.)					

57/

8 Order codes

Table 6. Order codes

Part number	Package
ULN2001A	DIP-16
ULN2002A	DIP-16
ULN2003A	DIP-16
ULN2004A	DIP-16
ULN2001D1013TR	SO-16 in tape and reel
ULN2002D1013TR	SO-16 in tape and reel
ULN2003D1013TR	SO-16 in tape and reel
ULN2004D1013TR	SO-16 in tape and reel

9 Revision history

Table 7. Revision history

Date	Revision	Changes	
05-Dec-2006	5	Order code updated and document reformatted.	
28-Aug-2007	6	Added Table 1 in cover page.	
07-May-2012	7	Modified: Figure 12 on page 9. Added: Figure 13, 14, 15 and Figure 16 on page 9.	
01-Jun-2012	8	Updated: DIP-16L package mechanical data Table 4 on page 12 and Figure 19 on page 11.	
22-Jul-2015	9	Added Plastic DIP16-L package. Removed Device summary table. Updated Table 7: Order code. Added Section 7.2: Plastic DIP-16L package information. Minor text changes.	
07-Nov-2017	10	Removed plastic DIP-16L package and associated order code ULN2003A	
27-Jun-2018	11	Updated: I _{I(ON)} test condition in Table 3: Electrical characteristics.	
09-Jul-2019	12	Added I _F , V _R , ESD parameters in <i>Table 1: Absolute maximum ratings</i> and note in <i>Table 2: Thermal data</i> .	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

DocID5279 Rev 12

17/17