ULN2003,04APG/AFWG

TOSHIBA Bipolar Digital Integrated Circuit Silicon Monolithic

ULN2003APG,ULN2003AFWG,ULN2004APG,ULN2004AFWG (Manufactured by Toshiba Malaysia)

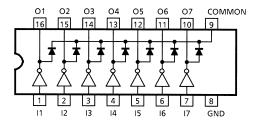
7ch Darlington Sink Driver

The ULN2003APG/AFWG Series are high–voltage, high–current darlington drivers comprised of seven NPN darlington pairs. All units feature integral clamp diodes for switching inductive loads.

Applications include relay, hammer, lamp and display (LED) drivers.

The suffix (G) appended to the part number represents a Lead (Pb)-Free product.

Features

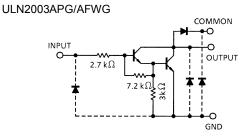

- Output current (single output): 500 mA max
- High sustaining voltage output: 50 V min
- Output clamp diodes
- Inputs compatible with various types of logic
- Package Type-APG: DIP-16pin
- Package Type-AFWG: SOL-16pin

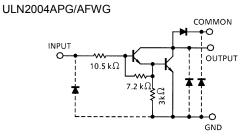
ULN2003APG
ULN2003APG ULN2004APG
5 JULI
ACTIAN
MARY Y UUU
000
DIP16-P-300-2.54A
ULN2003AFWG
ULN2004AFWG
CONTRACTION OF THE OWNER
Arcass
SOL16-P-150-1.27A
Weight

DIP16-P-300-2.54A : 1.11 g (typ.) SOL16-P-150-1.27A: 0.15 g (typ.)

Туре	Input Base Resistor	Designation
ULN2003APG/AFWG	2.7 kΩ	TTL, 5 V CMOS
ULN2004APG/AFWG	10.5 kΩ	6~15 V PMOS, CMOS

Fin Connection (top view) Tica S.A. de C.V.




www.agelectronica.com

<u>TOSHIBA</u>

ULN2003,04APG/AFWG

Schematics (each driver)

Note: The input and output parasitic diodes cannot be used as clamp diodes.

Absolute Maximum Ratings (Ta = 25°C)

Characteristic		Symbol	Rating	Unit	
Output sustaining volta	ge	V _{CE} (SUS)	-0.5~50	V	
Output current		Голт	500	mA/ch	
Input voltage		VIN	-0.5 ~30	V	
Clamp diode reverse voltage		V _R	50	V	
Clamp diode forward current		IF	50 <mark>0</mark>	mA	
Power dissipation	APG		1. <mark>47</mark>	W	
Power dissipation	AFWG	- P _D	1.2 <mark>5 (Note</mark>)	VV	1 4
Operating temperature		T _{opr}	-40~85	°C	
Storage temperature		T _{stg}	<u> </u>	°C	

Electrónica S.A. de C.V.

www.agelectronica.com

www.agelectronica.com

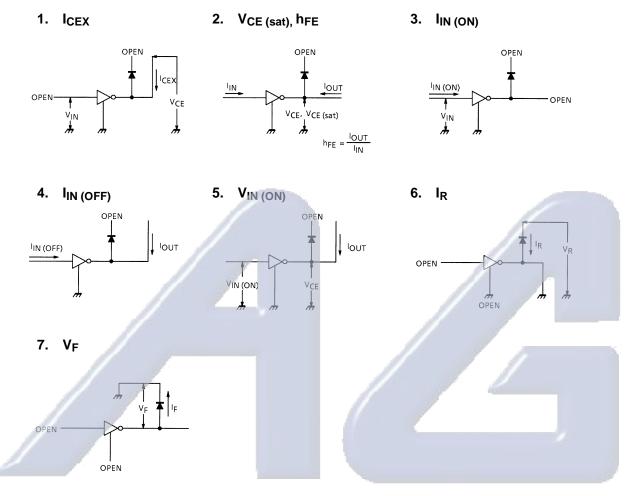
TOSHIBA

ULN2003,04APG/AFWG

Recommended Operating Conditions (Ta = -40 to 85°C)

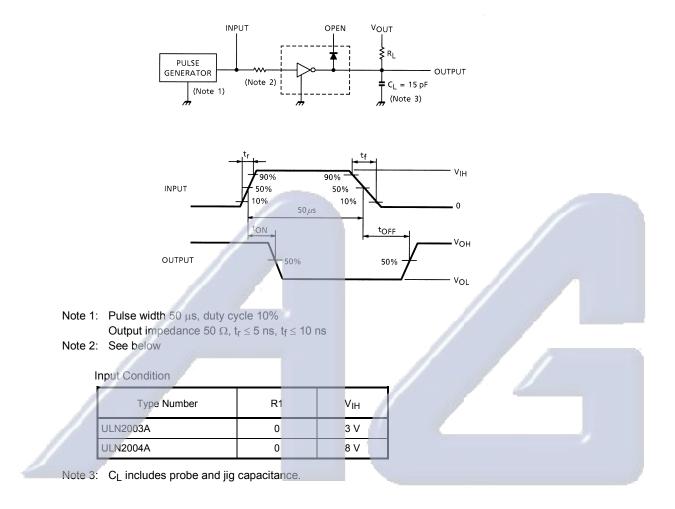
Characteristic		Symbol	Test Condition		Min	Тур.	Max	Unit	
Output sustaining voltage		V _{CE (SUS)}				0	_	50	V
Outrast surgest	APG	lout	$T_{pw} = 25 \text{ ms}$ 7 Circuits Ta = 85°C T _j = 120°C	Duty = 10%		0	_	350	
				Duty = 50%		0	_	100	mA/ch
Output current	AFWG			Duty = 10%		0	_	300	mAven
				Duty = 50%		0	_	90	
Input voltage		V _{IN}				0	_	24	V
Input voltage	ULN2003A	Maria	I _{OUT} = 400 mA		2.8	_	24	v	
(output on)	ULN2004A	V _{IN (ON)}	h _{FE} = 800			6.2	_		24
Input voltage (output off)	ULN2003A	N				0		0.7	V
	ULN2004A	VIN (OFF)				0	4	1.0	
Clamp diode reverse voltage		VR				/	-	50	V
Clamp diode forward current		IF				H		350	mA
Power dissipation	APG	P-	Ta = 85°C			/	-//	0 .76	W
Power dissipation	AFWG	PD	Ta = 85°C		(Note)	_	+	0 .65	VV

Note: On PCB (Test Board: JEDEC 2s2p)


ULN2003,04APG/AFWG

Electrical Characteristics (Ta = 25°C unless otherwise noted)

Characteristic		Symbol	Test Circuit	Test Condition		Min	Тур.	Max	Unit
Output leakage current			1	V _{CE} = 50 V, Ta = 25°C		_		50	
		ICEX		V _{CE} = 50 V, Ta = 85°C		_		100	μA
Collector-emitter saturation voltage				I _{OUT} = 350 mA, I _{IN} = 500 μA			1.3	1.6	
		V _{CE (sat)}	2	$I_{OUT} = 200 \text{ m}$	nA, I _{IN} = 350 μA		1.1	1.3	V
				I _{OUT} = 100 r	nA, I _{IN} = 250 μA		0.9	1.1	
DC Current transfer	ratio	h _{FE}	2	V _{CE} = 2 V, I _{OUT} = 350 mA		1000			
Input current	ULN2003A		3	V _{IN} = 2.4 V, I _{OUT} = 350 mA			0.4	0.7	mA
(output on)	ULN2004A	IIN (ON)	3	V _{IN} = 9.5 V, I _{OUT} = 350 mA		_	0.8	1.2	
Input current (outpu	t off)	IN (OFF)	4	l _{OUT} = 500 μA, Ta = 85°C		50	65	_	μA
	ULN2003A	Vin (on)	5	5 V _{CE} = 2 V h _{FE} = 800	$I_{OUT} = 350 \text{ mA}$		4	2.6	
Input voltage	ULIN2003A				$I_{OUT} = 200 \text{ mA}$	/	/	2.0	- V
(output on)	ULN2004A				$I_{OUT} = 350 \text{ mA}$	H	_	4.7	
	ULN2004A				I _{OUT} = 200 mA	/_	-//	4.4	
Clamp diode reverse current			6	V _R = 50 V, Ta = 25°C		_	F	50	uА
		IR		V _R = 50 V, Ta = 85°C		-1	_	100	μΑ
Clamp diode forward voltage		VF	7	I _F = 350 mA		7	_	2.0	V
Input capacitance	capacitance C _{IN} —			15	—	pF			
Tum-on delay		t _{ON}	8	$\label{eq:Vout} \begin{array}{l} V_{OUT} = 50 \ V, \ R_L = 125 \ \Omega \\ C_L = 15 \ pF \end{array}$			0.1		
Turn-off delay		tOFF	8	V _{OUT} = 50 \ C _L = 15 pF	/, $R_{L} = 125 \Omega$	_	0.2		μS


ULN2003,04APG/AFWG

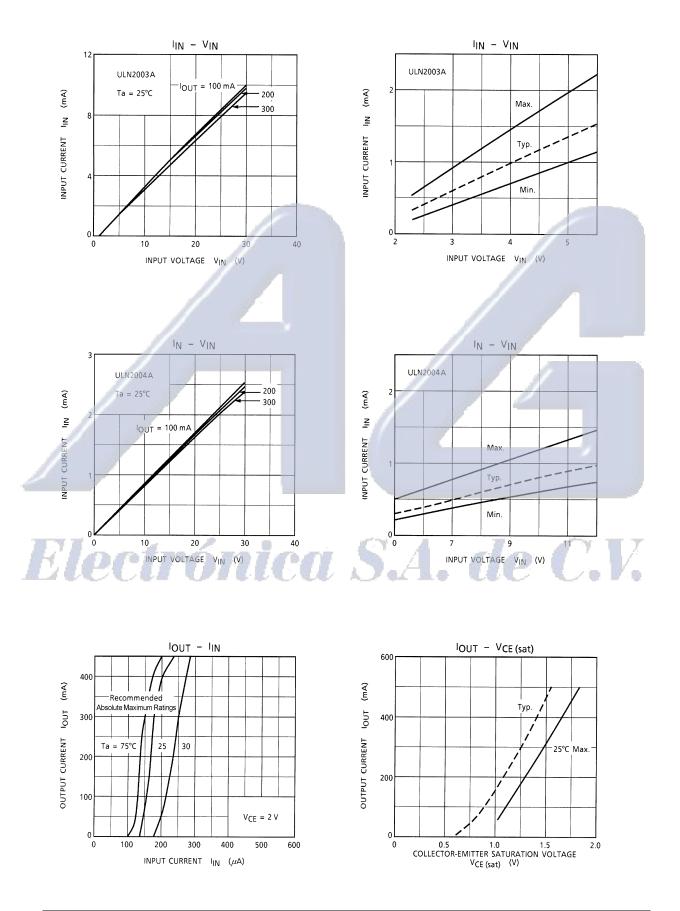
Test Circuit

ULN2003,04APG/AFWG

8. t_{ON}, t_{OFF}

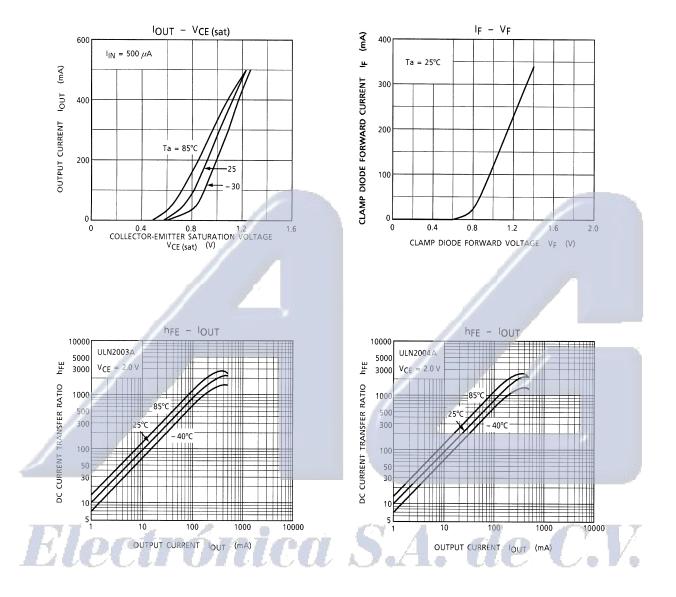
Precautions for Using

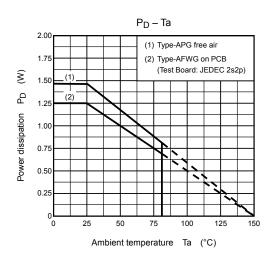
This IC does not include built-in protection circuits for excess current or overvoltage.


If this IC is subjected to excess current or overvoltage, it may be destroyed.

Hence, the utmost care must be taken when systems which incorporate this IC are designed.

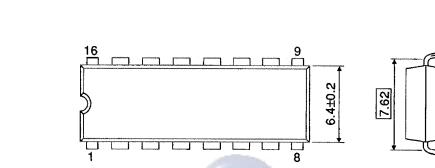
Utmost care is necessary in the design of the output line, COMMON and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.

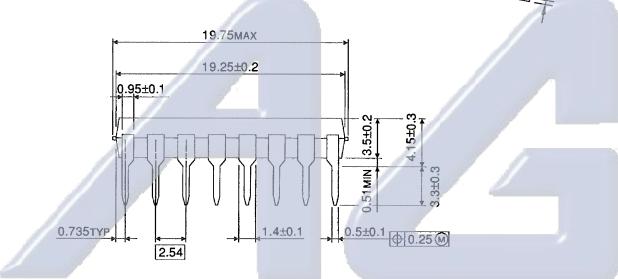

<u>TOSHIBA</u>


ULN2003,04APG/AFWG

2006-06-14

ULN2003,04APG/AFWG



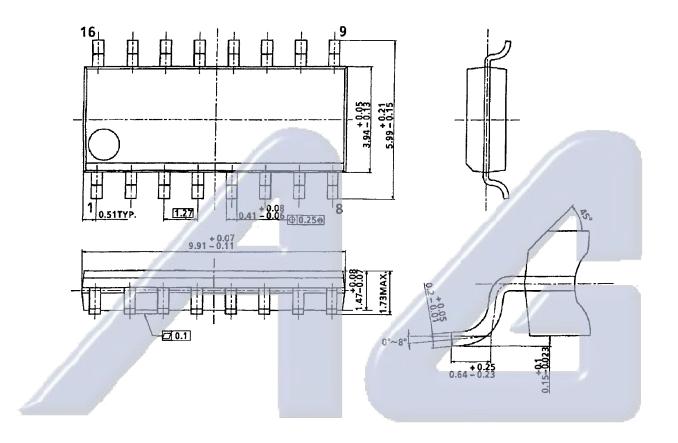

2006-06-14

www.agelectronica.com

Package Dimensions

DIP16-P-300-2.54A

Weight: 1.11 g (typ.)


ULN2003,04APG/AFWG

Unit : mm

1.9 9.9 9.9 0-15°

Package Dimensions

SOL16-P-150-1.27A

Weight: 0.15 g (typ.) Fonica S.A. de C.V.

www.agelectronica.com

ULN2003,04APG/AFWG

ULN2003,04APG/AFWG

Notes on Contents

1. Equivalent Circuits

The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

2. Test Circuits

Components in the test circuits are used only to obtain and confirm the device characteristics. These components and circuits are not guaranteed to prevent malfunction or failure from occurring in the application equipment.

IC Usage Considerations

Notes on Handling of ICs

- The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Do not exceed any of these ratings.
 Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.
- (2) Use an appropriate power supply fuse to ensure that a large current does not continuously flow in case of over current and/or IC failure. The IC will fully break down when used under conditions that exceed its absolute maximum ratings, when the wiring is routed improperly or when an abnormal pulse noise occurs from the wiring or load, causing a large current to continuously flow and the breakdown can lead smoke or ignition. To minimize the effects of the flow of a large current in case of breakdown, appropriate settings, such as fuse capacity, fusing time and insertion circuit location, are required.
- (3) If your design includes an inductive load such as a motor coil, incorporate a protection circuit into the design to prevent device malfunction or breakdown caused by the current resulting from the inrush current at power ON or the negative current resulting from the back electromotive force at power OFF. IC breakdown may cause injury, smoke or ignition.

Use a stable power supply with ICs with built-in protection functions. If the power supply is unstable, the protection function may not operate, causing IC breakdown. IC breakdown may cause injury, smoke or ignition.

Do not insert devices in the wrong orientation or incorrectly.

Make sure that the positive and negative terminals of power supplies are connected properly. Otherwise, the current or power consumption may exceed the absolute maximum rating, and exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.

In addition, do not use any device that is applied the current with inserting in the wrong orientation or incorrectly even just one time.

(5) Carefully select external components (such as inputs and negative feedback capacitors) and load components (such as speakers), for example, power amp and regulator. If there is a large amount of leakage current such as input or negative feedback condenser, the IC output DC voltage will increase. If this output voltage is connected to a speaker with low input withstand voltage, overcurrent or IC failure can cause smoke or ignition. (The over current can cause smoke or ignition from the IC itself.) In particular, please pay attention when using a Bridge Tied Load (BTL) connection type IC that inputs output DC voltage to a speaker directly.

ULN2003,04APG/AFWG

Points to Remember on Handling of ICs

(1) Heat Radiation Design

In using an IC with large current flow such as power amp, regulator or driver, please design the device so that heat is appropriately radiated, not to exceed the specified junction temperature (Tj) at any time and condition. These ICs generate heat even during normal use. An inadequate IC heat radiation design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown. In addition, please design the device taking into considerate the effect of IC heat radiation with peripheral components.

(2) Back-EMF

When a motor rotates in the reverse direction, stops or slows down abruptly, a current flow back to the motor's power supply due to the effect of back-EMF. If the current sink capability of the power supply is small, the device's motor power supply and output pins might be exposed to conditions beyond absolute maximum ratings. To avoid this problem, take the effect of back-EMF into consideration in system design.

