
ULN2803A DARLINGTON TRANSISTOR ARRAY

- 500-mA Rated Collector Current (Single Output)
- High-Voltage Outputs . . . 50 V
- Output Clamp Diodes
- Inputs Compatible With Various Types of Logic
- Relay Driver Applications
- Compatible with ULN2800A Series

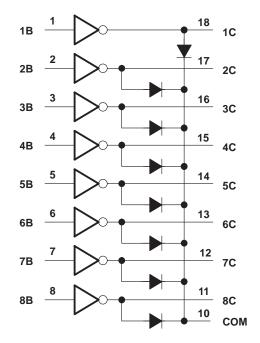
description/ordering information

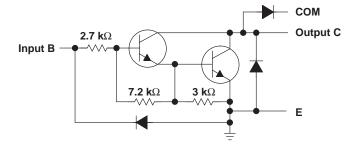
The ULN2803A is a high-voltage, high-current Darlington transistor array. The device consists of eight npn Darlington pairs that feature high-voltage outputs with common-cathode clamp diodes for switching inductive loads. The collector-current rating of each Darlington pair is 500 mA. The Darlington pairs may be connected in parallel for higher current capability.

Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers. The ULN2803A has a 2.7-k Ω series base resistor for each Darlington pair for operation directly with TTL or 5-V CMOS devices.

ORDERING INFORMATION

TA	PACKAG	_{SE} †	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
-40°C to 85°C	PDIP (N)	Tube of 20	ULN2803AN	ULN2803AN	
	SOIC (DW)	Tube of 40	ULN2803ADW	ULN2803A	
	SOIC (DVV)	Reel of 2000	ULN2803ADWR	ULINZOUSA	


[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.


1

ULN2803A DARLINGTON TRANSISTOR ARRAY

logic diagram

schematic (each Darlington pair)

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)†

Collector-emitter voltage	
Input voltage (see Note 1)	
Continuous collector current	500 mA
Output clamp diode current	500 mA
Total substrate-terminal current	
Package thermal impedance, θ _{JA} (see Notes 2 and 3): DW package	73.14°C/W
N package	62.66°C/W
Operating virtual junction temperature, T _J	150°C
Storage temperature range, T _{stq}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, unless otherwise noted, are with respect to the emitter/substrate terminal GND.
 - 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

PARAMETER		TEST COI	MIN	TYP	MAX	UNIT		
ICEX	Collector cutoff current	V _{CE} = 50 V, See Figure 1	$I_{\parallel} = 0$,			50	μΑ	
I _{I(off)}	Off-state input current	V _{CE} = 50 V, T _A = 70°C,	$I_C = 500 \mu A$, See Figure 2	50	65		μΑ	
I _{I(on)}	Input current	V _I = 3.85 V,	See Figure 3		0.93	1.35	mA	
	On-state input voltage	V _{CE} = 2 V, See Figure 4	$I_C = 200 \text{ mA}$			2.4		
V _{I(on)}			$I_C = 250 \text{ mA}$			2.7	V	
			$I_C = 300 \text{ mA}$			3		
VCE(sat)	Collector-emitter saturation voltage	I _I = 250 μA, See Figure 5	$I_C = 100 \text{ mA},$		0.9	1.1		
		I _I = 350 μA, See Figure 5	$I_C = 200 \text{ mA},$		1	1.3	V	
		I _I = 500 μA, See Figure 5	$I_C = 350 \text{ mA},$		1.3	1.6		
I _R	Clamp diode reverse current	$V_{R} = 50 V$,	See Figure 6			50	μΑ	
٧F	Clamp diode forward voltage	I _F = 350 mA,	See Figure 7		1.7	2	V	
Ci	Input capacitance	V _I = 0 V,	f = 1 MHz		15	25	pF	

switching characteristics at 25°C free-air temperature

	PARAMETER	TEST CO	MIN	TYP	MAX	UNIT	
^t PLH	Propagation delay time, low- to high-level output	$V_S = 50 \text{ V},$	$R_{L} = 163 \Omega$		130		
tPHL	Propagation delay time, high- to low-level output	$C_L = 15 pF$,	See Figure 8		20		ns
Vон	High-level output voltage after switching	V _S = 50 V, See Figure 9	$I_O \approx 300 \text{ mA},$	V _S - 20			mV

PARAMETER MEASUREMENT INFORMATION

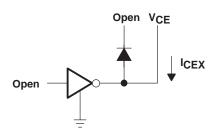


Figure 1. I_{CEX} Test Circuit

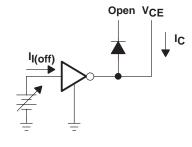


Figure 2. I_{I(off)} Test Circuit

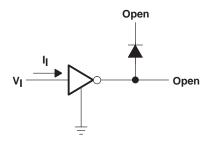


Figure 3. I_{I(on)} Test Circuit



Figure 4. V_{I(on)} Test Circuit

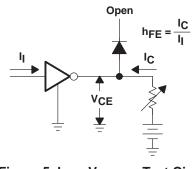


Figure 5. h_{FE} , $V_{CE(sat)}$ Test Circuit

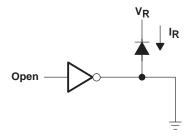


Figure 6. I_R Test Circuit

PARAMETER MEASUREMENT INFORMATION

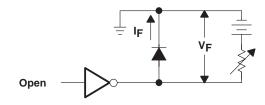
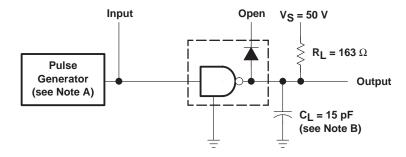
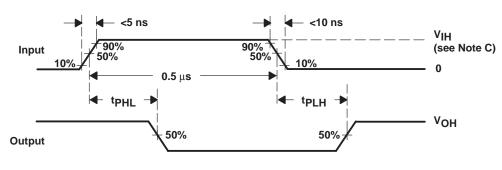
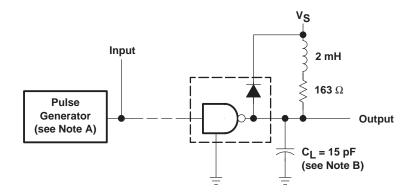
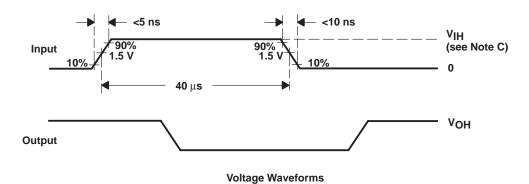




Figure 7. V_F Test Circuit

Test Circuit


Voltage Waveforms

NOTES: A. The pulse generator has the following characteristics: PRR = 1 MHz, Z_O = 50 Ω . B. C_L includes probe and jig capacitance. C. V_{IH} = 3 V_{IH}


Figure 8. Propagation Delay Times

PARAMETER MEASUREMENT INFORMATION

Test Circuit

NOTES: A. The pulse generator has the following characteristics: PRR = 12.5 KHz, Z_O = 50 Ω .

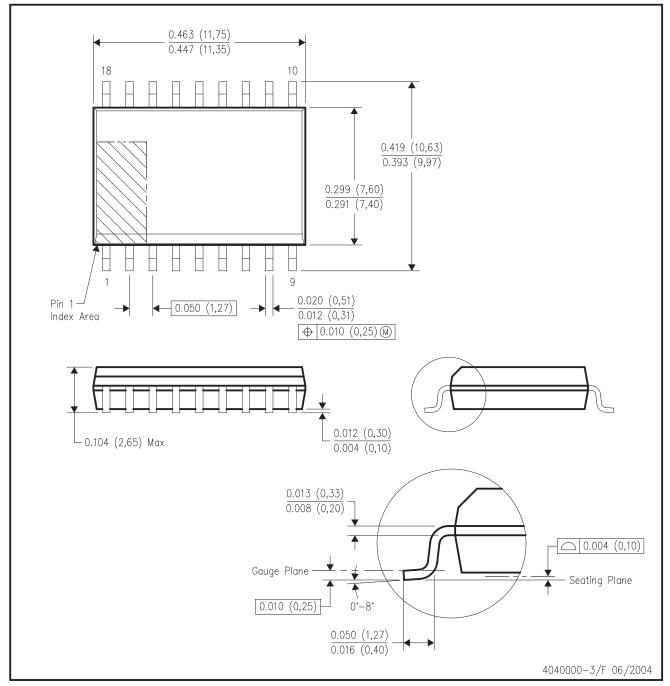

- B. C_L includes probe and jig capacitance.
 C. V_{IH} = 3 V

Figure 9. Latch-Up Test

DW (R-PDSO-G18)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AB.

PACKAGE OPTION ADDENDUM

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
ULN2803ADW	ACTIVE	SOIC	DW	18	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
ULN2803ADWG4	ACTIVE	SOIC	DW	18	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
ULN2803ADWR	ACTIVE	SOIC	DW	18	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
ULN2803ADWRG4	ACTIVE	SOIC	DW	18	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
ULN2803AN	ACTIVE	PDIP	N	18	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
ULN2803ANE4	ACTIVE	PDIP	N	18	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

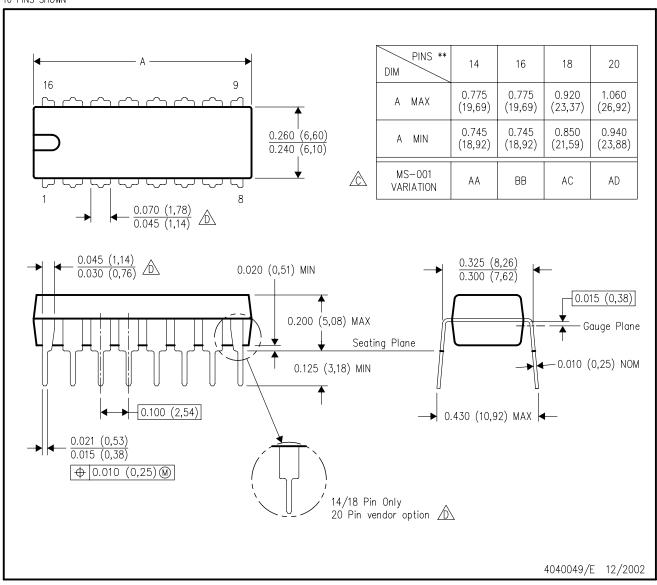
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

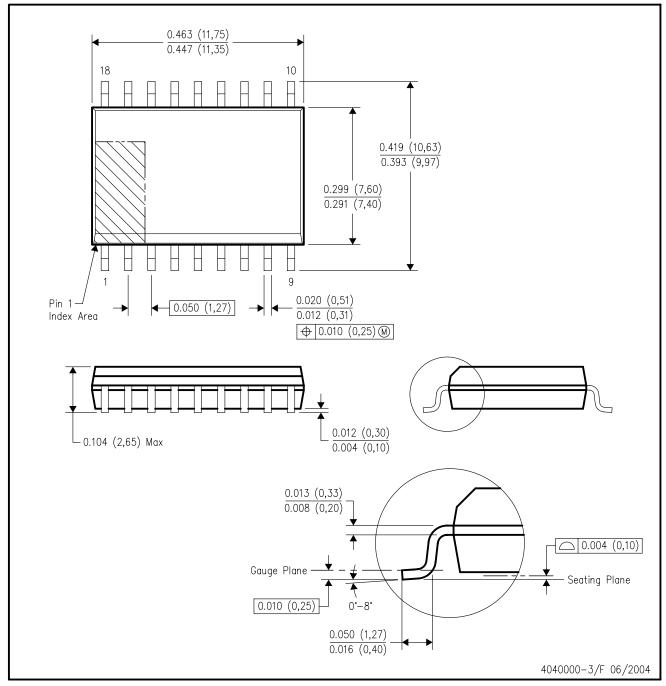

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G18)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AB.

