

TARJETA R3 ATMEGA328 **COMPATIBLE CON ARDUINO UNO**

UNO-R3/ATMEGA328

sello distintivo

calificados

Descripción

El UNO-R3/ATMEGA328 es una tarjeta basada en el microcontrolador ATmega328P, se considera la más sencilla y a su vez la más útil si es que quieres adentrarte en el mundo de la electrónica. Cuenta con todos los elementos necesarios para la conexión de sensores a las entradas y/o actuadores a las salidas.

Aplicaciones

Esta tarjeta puede utilizarse para diferentes aplicaciones, como, por ejemplo:

- Automatización industrial
- Domótica
- Herramientas de prototipado
- Plataformas de entrenamiento para aprendizaje de electrónica
- Eficiencia energética
- Monitorización •
- Adquisición de datos
- Aprendizaje de habilidades tecnológicas y programación

Especificaciones técnicas

Microcontrolador	ATmega328P
Voltaje de funcionamiento	5V
Voltaje de entrada (recomendado)	7-12V
Pines digitales I/O	14
Pines PWM	6
Pines de entrada analógicos	6
Corriente por cada pin I/O	20mA
Corriente para pin de 3.3V	50mA
Memoria flash	32 KB, (0.5 KB son usados por el bootloader)
SRAM	2 KB (ATmega328P)
EEPROM	1 KB (ATmega328P)
Frecuencia de reloj	16 MHZ
LED de prueba	Digital 13
Dimensiones	68.6 mm x 53.4 mm (largo x ancho)
Peso	25 g

Alimentación

- Puerto USB
- Fuente externa 7-12VDC

Elementos de la tarjeta

Primeros pasos

- Conectar el cable USB, uno de los extremos va conectado al puerto USB de la tarjeta y el otro directamente al puerto USB de la PC.
- Para cargar el primer sketch en el Arduino UNO debe tener instalado el IDE de Arduino en su computadora, que se debe descargar de la siguiente página: <u>https://www.arduino.cc/en/Main/Software</u>
- Una vez instalado el software, diríjase a la pestaña: Archivo ->Ejemplos -> Basics Deberá elegir Blink Posteriormente deberá elegir la tarjeta en: Herramientas-> tarjeta -> Arduino/Genuino UNO Conecte su tarjeta y a continuación vaya a: Herramientas- >Puerto Elija el puerto COM que su PC asignó a su tarjeta.

Nuevo Abrir Abrir Reciente Proyecto	Ctrl+N Ctrl+O >	-10 - 81 <u>111281//100648</u>	ounnoss	
jemplos	Child	∆ Ejemplos Construidos		
Jerrar Salvar	Ctrl+S	01.Basics	3	AnalogReadSerial
Guardar Como	Ctrl+Mayús+S	02.Digital 03.Analog 04.Communication 05.Control	1	BareMinimum
Configurar Página mprimir	Ctrl+Mayús+P Ctrl+P			Blink DigitalReadSerial Fade
Preferencias	Ctrl+Coma	06.Sensors	3	ReadAnalogVoltage
Salir	Ctrl+Q	07.Display 08.Strings	>	

Herr	ramientas Ayuda				
	Auto Formato Archivo de programa. Reparar codificación & Recargai	Ctrl+T			
	Monitor Serie Serial Plotter	Ctrl+Mayús+M Ctrl+Mayús+L	eatedly.		
	WiFi101 Firmware Updater		, MEGA and ZERO		
	Placa: "Arduino/Genuino Uno"		▲		
	Puerto Obtén información de la placa		Arduino Yún Arduino/Genuino Uno Arduino Duemilanove or Diecimila		

 Por último debemos compilar un programa y luego cargarlo en el ícono de flecha "subir"

Ejemplo de implementación con sensor de color TCS3200

Materiales Necesarios:

- Tarjeta Arduino UNO-R3
- Sensor de color TCS3200 (OKY3453)
- Jumpers (cables de conexión)
- Protoboard (opcional)

Conexiones:

- VCC (TCS3200) al 5V (Arduino)
- GND (TCS3200) al GND (Arduino)
- S0 (TCS3200) al pin digital 4 (Arduino)
- S1 (TCS3200) al pin digital 5 (Arduino)
- S2 (TCS3200) al pin digital 6 (Arduino)
- S3 (TCS3200) al pin digital 7 (Arduino)
- OUT (TCS3200) al pin digital 8 (Arduino)

Código:

- int S0 = 4;
- int S1 = 5;

int S2 = 6;

int S3 = 7;

int sensorOut = 8;

```
int frequency = 0;
```

void setup() {

pinMode(S0, OUTPUT);

pinMode(S1, OUTPUT);

pinMode(S2, OUTPUT);

pinMode(S3, OUTPUT);


```
pinMode(sensorOut, INPUT);
```

// Configurar el sensor a escala de 20%

```
digitalWrite(S0, HIGH);
digitalWrite(S1, LOW);
Serial.begin(9600);
```

```
}
```

```
void loop() {
```

// Configurar filtro para detectar el color rojo

digitalWrite(S2, LOW);

digitalWrite(S3, LOW);

// Leer la frecuencia del color rojo

frequency = pulseIn(sensorOut, LOW);

int red = frequency;

// Configurar filtro para detectar el color verde

```
digitalWrite(S2, HIGH);
```

```
digitalWrite(S3, HIGH);
```

// Leer la frecuencia del color verde

frequency = pulseIn(sensorOut, LOW);

int green = frequency;

// Configurar filtro para detectar el color azul

digitalWrite(S2, LOW);

```
digitalWrite(S3, HIGH);
```

// Leer la frecuencia del color azul

frequency = pulseIn(sensorOut, LOW);

```
int blue = frequency;
```

// Imprimir los valores de los colores en el monitor serie

Serial.print("R= ");

Serial.print(red);

Serial.print(" G= ");

Serial.print(green);

Serial.print(" B= ");

Serial.println(blue);

delay(1000);

}

Explicación del código

- Configuración de pines: Se configuran los pines S0, S1, S2, S3 y sensorOut del sensor TCS3200 y se establecen los pines de entrada y salida.
- Escala del sensor: Se configura la escala del sensor al 20% para que las lecturas sean más estables.
- Lectura de colores: Se configura el sensor para detectar rojo, verde y azul, y se mide la frecuencia de cada color. La frecuencia se almacena en las variables red, green y blue.
- Salida en el monitor serie: Se imprimen los valores de cada color en el monitor serie cada segundo.

Enlace externo: Ejemplo de implementación con Arduino

Profe Pablo. (2019, 18 enero). Como programar un ATmega328P con arduino SMD [Vídeo]. YouTube. <u>https://www.youtube.com/watch?v=-9fBePIRgic</u>

